When watching the image of a natural scene on a computer screen, observers initially move their eyes towards the center of the image - a reliable experimental finding termed central fixation bias. This systematic tendency in eye guidance likely masks attentional selection driven by image properties and top-down cognitive processes. Here we show that the central fixation bias can be reduced by delaying the initial saccade relative to image onset. In four scene-viewing experiments we manipulated observers' initial gaze position and delayed their first saccade by a specific time interval relative to the onset of an image. We analyzed the distance to image center over time and show that the central fixation bias of initial fixations was significantly reduced after delayed saccade onsets. We additionally show that selection of the initial saccade target strongly depended on the first saccade latency. A previously published model of saccade generation was extended with a central activation map on the initial fixation whose influence declined with increasing saccade latency. This extension was sufficient to replicate the central fixation bias from our experiments. Our results suggest that the central fixation bias is generated by a default activation as a response to the sudden image onset and that this default activation pattern decreases over time. Thus, it may often be preferable to use a modified version of the scene viewing paradigm that decouples image onset from the start signal for scene exploration to explicitly reduce the central fixation bias.
https://jov.arvojournals.org/article.aspx?articleid=2661519