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Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been
used to test theoretical claims about the cognitive architecture of word-reading processes. Additive
effects among these factors have been taken as evidence for discrete-stage models of word reading. We
present evidence from linear mixed-model analyses applied to 2 lexical decision experiments indicating
that apparent additive effects can be the product of aggregating over- and underadditive interaction
effects that are modulated by recent trial history, particularly the lexical status and stimulus quality of the
previous trial’s target. Even a simple practice effect expressed as improved response speed across trials
was powerfully modulated by the nature of the previous target item. These results suggest that additivity
and interaction between factors may reflect trial-to-trial variation in stimulus representations and decision
processes rather than fundamental differences in processing architecture.
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Many formal models of word-reading processes assume the
existence of separate processing modules that are responsible for
computing different types of information (e.g., deriving orthogra-
phy from visual input, computing phonology from orthographic
patterns, selecting semantic information that corresponds to a
presented word). A fundamental issue in the design of such models
is the manner in which information is shared between the constit-
uent modules. It is commonly assumed that input between pro-
cessing modules is cascaded, so that partial information moves
between modules even before a module has completed its opera-
tions (e.g., McClelland, 1979), and most current models of visual
word identification include feedback from higher (e.g., lexical) to
lower (e.g., letter) levels of processing (e.g., Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & Zorzi, 2007;
Plaut & Booth, 2000).

These architectural features play an important role in allowing
computational models to simulate some fundamentally important
behavioral results involving word-identification tasks and, in par-

ticular, interactions between independent variables that influence
the speed with which words are identified. In word-identification
tasks such as naming aloud or lexical decision, semantic priming
of target words is enhanced if the targets are presented in a visually
degraded form such as low contrast (e.g., Becker, 1979; Borowsky
& Besner, 1991, 1993; Stanovich & West, 1983). The typical form
of this interaction is overadditive, whereby the influence of se-
mantic priming is greater when performance is slowed by a low-
contrast stimulus. In general, an overadditive interaction is one in
which the simultaneous influence of two independent variables is
larger than what would be expected by a simple summation of their
individual effects. For example, unrelated primes and low stimulus
quality both slow responding relative to related primes and high
stimulus quality, respectively. When combined, the two former
conditions may yield an increase in response times that is larger
than would be produced by adding their two separate effects.

An example of how an overadditive interaction may be gener-
ated is illustrated in Figure 1A, where the influences of stimulus
quality and priming on the accumulation of evidence and setting of
response thresholds are shown. This depiction is consistent with
Morton’s (1969) logogen model, in which it is assumed that
evidence in support of a particular word accrues over time and that
when the amount of evidence surpasses a threshold, a response
(e.g., naming the word or a positive lexical decision) can be made.
In Figure 1A, evidence accumulates more rapidly for a clear
stimulus than for a degraded one, so the evidence threshold needed
for a response is reached sooner. In the logogen model, the effect
of semantic priming is to lower the response threshold for a primed
word, and this idea is represented in Figure 1A as a lower amount
of evidence required for a response when a related prime is
presented. The faster rate of evidence accrual for clear targets leads
to a smaller priming effect (T2 ! T1) than for degraded targets
(T4 ! T3), as shown in the figure.

Another possibility, in keeping with the idea of additive factors
(Roberts & Sternberg, 1993; Sternberg, 1969), is that degrading
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the stimulus may delay the start of evidence accrual (perhaps to
allow for stimulus clean-up), but once started, the rate is the same
as for clear targets. As shown in Figure 1B, these assumptions lead
to additive effects of stimulus quality and priming.

A particularly flexible approach to account for combined effects
of independent variables is exemplified by the Plaut and Booth
(2000) connectionist model of word processing. In this model, it is
assumed that evidence from visual input is combined with contex-
tual evidence such as semantic primes to generate input to a
processing module that produces output leading to a response. The
function relating input to output activation is sigmoidal, as shown
in Figure 1C. Response time differences are determined by differ-
ences in the level of output activation. Depending on the degree of
input activation, factors such as stimulus quality and semantic
priming may yield interactive or additive effects. Figure 1C illus-
trates an overadditive interaction, in which priming is larger for
degraded targets because input activation for those targets operates
in a relatively steep section of the activation function. If both target
types had input values in that steep, virtually linear region (imagine
shifting the input values to the left in Figure 1C), an additive effect
would be produced. Interestingly, if the input activation values were
pushed to even lower levels so that the earliest part of the activation
function were involved, an underadditive interaction would be gen-
erated, with larger priming effects found among clear targets.

The fact that computational models, such as the Plaut and Booth
(2000) connectionist model, may produce different patterns of
interaction or additivity depending on the overall level of activa-
tion (Borowsky & Besner, 2006) raises an interesting possibility.
Namely, an observed additive relationship in behavioral data may
arise because of a combination of two different patterns of inter-
action that, when aggregated, yield no indication of an interaction.
Some third factor, not considered in standard computational mod-
els, may be responsible for modulating the interaction, leading to
a spurious additive pattern. In the experiments reported here, we
demonstrated that features of the target on the previous trial in an
experiment induce such pseudoadditive patterns. The resulting
three-way interaction, including trial history as a factor, that en-
sues from a pair of two-way interactions of opposite pattern may
serve as a challenge for future development of computational
models of word recognition.

Models of Interactive and Additive Effects

The capability of simulating interactive effects with computa-
tional models that assume feedback between modules (e.g., Plaut
& Booth, 2000), integration of information from independently
operating modules (e.g., Massaro & Cohen, 1991), or combined
effects of threshold setting and evidence accumulation rate (Mor-
ton, 1969) may become a liability when one considers factors that
typically do not interact, such as word frequency and stimulus
quality (e.g., Becker & Killion, 1977; Stanners, Jastrzembski, &
Westbrook, 1975; Yap & Balota, 2007) or the existence of in-
stances in which factors that usually interact, such as priming and
stimulus quality, are additive (e.g., Brown & Besner, 2002; Fer-
guson, Robidoux, & Besner, 2009; Robidoux, Stolz, & Besner,
2010; Stolz & Neely, 1995). Even putting aside the question of the
type of control structure needed to allow a computational model to
shift between generating interactive and additive effects of factors
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Figure 1. Schematic representation of accrual of evidence (Panels A and B)
or activation strength (Panel C) under manipulations of stimulus quality (solid
lines " clear, dashed lines " degraded) and semantic priming (R " related,
U " unrelated). In Panels A and B, the effect of stimulus quality is shown as
a difference in slope or a difference in onset, respectively. Semantic priming
affects the evidence threshold needed for a response. In Panel C, the strength
of input is affected by stimulus quality (weaker input for degraded stimuli, UD

and RD, than for clear stimuli, UC and RC) and by semantic priming (weaker
input for unrelated primes). The shape of the input–output function and the
location of input activations along that function determine the combined
effects of these two variables. See the text for an explanation of the effects
produced by these models. T " Time; Degr. " degraded. Panels A and B are
adapted from “Visual Word Recognition: A Multistage Activation Model,” by
R. Borowsky and D. Besner, 1993, Journal of Experimental Psychology:
Learning, Memory, and Cognition, 19, p. 815. Copyright 1993 by the Amer-
ican Psychological Association. Panel C is adapted from “Individual and
Developmental Differences in Semantic Priming: Empirical and Computa-
tional Support for a Single-Mechanism Account of Lexical Processing,” by D.
Plaut and J. R. Booth, 2000, Psychological Review, 107, p. 790. Copyright
2000 by the American Psychological Association.
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on word identification, a critical issue is whether these models are
able to produce additive effects at all.

Besner and colleagues (Besner & O’Malley, 2009; Besner, Wartak,
& Robidoux, 2008; Borowsky & Besner, 2006) and Plaut and Booth
(2006) examined the ability of the Plaut and Booth (2000) connec-
tionist model, which includes interactive feedback between modules,
to simulate additive effects of word frequency and stimulus quality. A
critical aspect of this model is that response latency is a linear function
of the output of processing units in the model’s semantic module and
that output activation is a sigmoid function of the strength of input into
the units of that module. Plaut and Booth (2006) were able to simulate
additive effects of word frequency and stimulus quality by restricting
the level of input to the semantic module to be within a certain range
(the linear region of a sigmoid-shaped activation function that trans-
lates input activation to output activation). Besner et al. (2008) dem-
onstrated, however, that in the Plaut and Booth model, as the strength
of the simulated manipulation of stimulus quality increased, the pat-
tern of effects changed from an underadditive interaction (stronger
influence of stimulus quality on high-frequency words than on low-
frequency words) to additivity and then to an overadditive interaction
(stimulus quality had a larger impact on low-frequency words).
Besner et al. noted that the underadditive interaction was a result that
has not been seen with skilled readers, and it was deemed problematic
that the model generated such a result.

Ziegler, Perry, and Zorzi (2009) examined the relationship be-
tween stimulus quality and word frequency in the context of the
Perry et al. (2007) connectionist dual process model (CDP#) of
word reading. In this dual-route model, words may be read either
through a lexical route (learned orthographic patterns directly
activate lexical entries) or a nonlexical route in which a phono-
logical code is assembled from orthographic input. Processing in
the nonlexical route is thresholded so that activation of units at the
letter level must reach a minimum threshold before activation is
passed on to the grapheme level. If processing of letter strings is
dominated by the nonlexical route, additivity between stimulus
quality and word frequency can arise because the effects of re-
duced stimulus quality can be resolved at the letter level before
input is passed to later processing modules. This stage-wise pro-
cessing configuration is critical in producing additive effects
(Borowsky & Besner, 2006). Ziegler et al. argued that in the
word-naming task, if pure word lists are used, then both the lexical
and the nonlexical routes would contribute to the computation of a
target word’s pronunciation. Because the lexical route is not
thresholded, an overadditive interaction between word frequency
and stimulus quality (low-frequency words show larger effects of
stimulus quality) was produced by the model. A mixed list of
words and nonwords, however, was argued to lead to a deemphasis
of the lexical route because it cannot be used to compute the
pronunciation of nonwords. Under these conditions, the CDP#
model produced additivity. The shift from overadditive interaction
to additivity, tied to the nature of the target items, simulated the
response time results in a naming task reported by O’Malley and
Besner (2008). We note, however, that Besner and O’Malley (2009)
pointed out that although the CDP# model simulated additive effects
of stimulus quality and word frequency in response time, the model
produced an interactive effect in error rates. We agree that this fact
raises some doubts about this particular model’s capabilities, but for
present purposes, our primary concern is the principle that a tradeoff

between a thresholded and a nonthresholded process may modulate
additivity and interaction between factors.

A parametric examination of the behavior of the CDP# model
by Ziegler et al. (2009) revealed an additional interesting outcome.
If the influence of the lexical route was reduced sufficiently, the
word frequency effect became quite small under conditions of low
stimulus quality, yielding an underadditive interaction between
word frequency and stimulus quality, as had been observed with
the Plaut and Booth (2000) model (Besner et al., 2008). This aspect
of the model’s behavior led Ziegler et al. to propose that individual
differences between subjects might be characterized by varying de-
grees of reliance on the lexical route when naming printed letter
strings and that these differences might be manifest in different
patterns in the joint effects of word frequency and stimulus quality.
Thus, some subjects might show additivity, whereas others could
show overadditive and perhaps even underadditive interactions. Ag-
gregating across subjects would likely result in an additive pattern.

Dynamic Adjustment of Processing

Although Besner et al. (2008) pointed out that the underadditive
interaction between word frequency and stimulus quality gener-
ated by the Plaut and Booth (2000) model had not been observed
in human data, the Ziegler et al. (2009) analysis suggests that an
interaction of that type may be hidden behind the overall mosaic
seen when data are aggregated in the typical manner. Indeed,
Besner, O’Malley, and Robidoux (2010) found an underadditive
interaction in a naming task when stimulus quality was manipu-
lated along with spelling-sound regularity: Exception words (e.g.,
pint) were pronounced more slowly than regular words (e.g., hint),
and the effect of stimulus quality was stronger for regular words.
In dual-route models such as CDP#, exception words take longer
to read because they invite two opposing pronunciations, the
correct one from the lexical route and an erroneous one from the
nonlexical route. Besner et al. (2010) proposed that under low
stimulus quality, the nonlexical route is less active, so its contri-
bution to the computation of a pronunciation response is reduced,
paving the way for a more efficient, correct pronunciation of an
exception word based on the lexical route. They suggested that the
involvement of the nonlexical route might be adjusted dynamically
as a low-contrast stimulus is encountered. This idea is quite plau-
sible, given earlier demonstrations that response time is sensitive
to recent trial history, such as slowing after commission of an error
(e.g., Allain, Burle, Hasbroucq, & Vidal, 2009; Laming, 1979;
Rabbitt, 1966, 1989).

Another example of dynamic adjustment of processing that can
lead to an underadditive interaction was reported by Yap, Balota,
Tse, and Besner (2008). They found the usual additive effect of
stimulus quality and word frequency in the aggregate data from a
lexical decision task. An analysis of response time distributions
based on Vincentized data from experiments in which pseudo-
homophones (e.g., brane) were used as nonword targets, however,
revealed a more complex pattern. For this particular case, they
observed opposing interaction effects, with an overadditive inter-
action occurring when response times were relatively short, but for
longer response times, there was an underadditive interaction. Yap
et al. suggested that underadditivity may have occurred because
subjects sometimes engaged in a checking operation for low-
frequency words, regardless of stimulus quality, whereas this
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operation would be applied to high-frequency words only when
stimuli were low contrast. Checking would lead to generally longer
response times, and its differential application in the case of
high-frequency words would increase the influence of stimulus
quality on those items.

Dynamic processing adjustments may also influence the joint
effects of stimulus quality and semantic priming. As discussed
above, these variables have been shown to yield either an
overadditive interaction or additivity. One factor that determines
the nature of these joint effects is the proportion of trials on which
related primes are used (Stolz & Neely, 1995), with an additive
pattern emerging when a low relatedness proportion is in effect.
Although no computational model that implements dynamic
changes in word-processing mechanisms triggered by features of
the current stimulus has yet emerged, there are recent formal
models that incorporate sensitivity to events or processing fluency
experienced on recent trials. For example, Kinoshita, Forster, and
Mozer (2008) proposed a model (adaptation to the statistics of the
environment [ASE]) to account for sensitivity to the proportion of
repetition-prime trials in masked priming experiments. The model
simulated that sensitivity by adapting its response-initiation pro-
cesses to recent trial difficulty. In particular, evidence about when
a response should be initiated by the model is derived from the
current trial as well as from recent trials, and the results are
combined to determine when a response is produced. Given that
repetition primes allow for faster responding, a high proportion of
such trials makes it likely that the current trial will have been
immediately preceded by one or more repetition-prime trials. If the
current trial is also a repetition-prime trial, then the combined
evidence would encourage a short latency for initiating a response.

The Kinoshita et al. (2008) model leads to the prediction that
response time on Trial N should be sensitive to the characteristics
of Trial N ! 1. Kinoshita, Mozer, and Forster (2011) tested this
prediction in a series of masked priming experiments in which
repetition and unrelated primes were used. To provide a statisti-
cally powerful examination of their data at the level of individual
trials, Kinoshita et al. (2011) used a linear mixed-model analysis
(LMM; e.g., Baayen, Davidson, & Bates, 2008; Kliegl, Masson, &
Richter, 2010) and found that as response time on Trial N ! 1
increased, so did response time on the current trial.

The potential for trial-to-trial variation in processing difficulty
to influence the current trial raises an important possibility with
respect to patterns of interaction and additivity seen with word
frequency, stimulus quality, and priming. Namely, an empirical
demonstration of an additive relationship between two factors may
conceal an underlying pattern of opposing interactions that, when
aggregated, yield the appearance of additivity. A clear example of
this possibility was reported by Yap et al. (2008). As discussed
earlier, an aggregate additive relationship between word frequency
and stimulus quality turned out to be composed of a combined
overadditive and underadditive interaction when nonwords were
pseudohomophones, with the type of interaction dependent on
whether response times were generally short or long, respectively.
However, the Kinoshita et al. (2011) results suggest a more fine-
grained possibility: the combined effects of two factors may vary
depending on recent trial history (e.g., whether processing on the
previous trial was difficult or easy).

From the perspective of the Plaut and Booth (2000) connection-
ist model, one might propose that the amount of output activation

required for responding varies depending on what was experienced
on the preceding trial. This variation would position the system at
different points along the function that relates input activation to
output activation in semantic processing units (see Figure 1C). For
example, encountering fluent processing on the previous trial
might lead to a lower threshold for responding on the current trial,
thereby requiring a lower level of input–output activation. The
Plaut and Booth model could produce additivity or either type of
interaction, depending on where the system is positioned on the
relevant activation function when it reaches a sufficient level of
activation for responding.

Moreover, consideration should be given to how subjects adapt
to the task of identifying words, particularly when stimulus quality
is varied. Under these conditions, rapidly discriminating words
from nonwords in a lexical decision task, for example, may depend
on stimulus learning that accrues over the course of a substantial
number of trials. Turner, Van Zandt, and Brown (2011) proposed
a formal model of stimulus discrimination (signal vs. noise) in
which subjects develop signal-to-noise likelihood ratios for vari-
ous points along a stimulus strength axis. These ratios are modified
by recent trial events in the following way. Presentation of a signal
stimulus that has a particular strength value will increase the
likelihood that any stimulus with a strength value similar to that of
the presented stimulus is also in the signal category. This system
is essentially a Hebbian learning algorithm in which the strength of
the connection between a value on the signal strength axis and a
response category (e.g., signal) is increased when a signal is
presented nearby. Thus, two closely spaced (similar) stimulus
values are likely to come to have similar signal response strengths,
and the recent presentation of one will strengthen the other.

With these possibilities in mind, we used a lexical decision task
to examine more closely the relationships between three factors
that have been shown to influence word-identification processes
and that are known to have additive or interactive effects: word
frequency, stimulus quality, and semantic priming. Like Kinoshita
et al. (2011), we used LMMs to evaluate possible influences of
recent trial history on the nature of these relationships. We antic-
ipated that an additive relationship emerging from an analysis of
aggregated data might mask a more complex relationship that
varies as a function of the difficulty of the preceding trial. Uncov-
ering layered effects of this nature would be an important step in
understanding how additive effects arise and whether they should
be taken as evidence of serial processing stages (e.g., Borowsky &
Besner, 2006) or whether a more elaborate account is required.

There were additional advantages to using LMM instead of the
usual analysis of variance (ANOVA) to analyze data from word-
recognition experiments. First, the inclusion of item factors, such
as word frequency, carries with it the question of whether observed
effects may be generalized across a broad population of items. This
question usually is addressed within ANOVA by computing two
sets of F ratios, one using subjects as the random factor and the
other using items as the random factor (see Raaijmakers, Schri-
jnemakers, & Gremmen, 1999, and Raaijmakers, 2003, for a
critique of this approach). A more efficient and justifiable method,
however, is to model potential random effects of both subjects and
items simultaneously using LMM (e.g., Baayen et al., 2008).

Second, the LMM approach allowed us to test for the possibility
that there are stable individual differences between subjects with
respect to semantic priming effects. Stolz, Besner, and Carr (2005)
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evaluated the reliability of semantic priming effects using split-
half and test–retest measures to determine whether individual
subjects consistently generated large or small priming effects.
Their analyses indicated that semantic priming effects had low
reliability, particularly when priming was likely to have only an
automatic influence on performance (e.g., because a short stimulus
onset asynchrony [SOA] was used). Stolz et al. concluded that
automatic semantic priming yields little in the way of systematic
individual differences. These measures of reliability, however,
depend on computing correlations between difference scores,
which can themselves have rather low reliability. In our study, by
directly estimating the variance for between-subject semantic
priming effects as an LMM parameter, we corrected for the unre-
liability of the subject-based difference scores. Moreover, if we
could establish that there were reliable differences between sub-
jects in semantic-priming effects, we might also observe signifi-
cant correlations of these effects with differences between subjects
in mean response time or other experimental effects. These corre-
lations are also estimated as LMM parameters (Kliegl et al., 2010;
Kliegl, Wei, Dambacher, Yan, & Zhou, 2011).

Finally, the LMM approach allowed a seamless integration of a
continuous covariate such as trial number and its interaction with
experimental factors of semantic priming, word frequency, and
stimulus quality. Such interactions would inform us about how
subjects’ sensitivity to events or processing fluency changes across
the experiment.

Experiment 1

To enhance the possibility of finding additive effects of factors
in aggregate data, our manipulation of semantic priming in a
lexical decision task consisted of comparing low-associate primes
to unrelated primes. In addition, the prime–target SOA was re-
stricted to 200 ms. Under these conditions, priming and stimulus
quality have been shown to have additive effects (Stolz & Neely,
1995). We anticipated that word frequency and stimulus quality
would produce additive effects when aggregate data were consid-
ered, as has commonly been found (e.g., O’Malley, Reynolds, &
Besner, 2007; Yap et al., 2008). The potential for semantic priming
and word frequency to produce an overadditive interaction was
considered to be high given previous results (e.g., Becker, 1979;
Borowsky & Besner, 1993), although Yap, Tse, and Balota (2009)
reported finding additive effects for these factors among subjects
with relatively high vocabulary knowledge.

In addition to examining effects in aggregated data, we used
LMMs to determine whether trial history influences the pattern of
additivity versus interaction that holds between these three inde-
pendent variables. Difficulty of responding on a given trial may be
influenced by any of these factors, with relatively high difficulty
arising from low stimulus contrast, low frequency, or an unrelated
prime. In testing the possibility that the joint effects of these
factors on the current trial are modulated by difficulty of the
previous trial, we anticipated that a more complex account of
additive effects in particular might be required.

Method

Subjects. Seventy-two University of Victoria (Victoria, Brit-
ish Columbia, Canada) students volunteered to participate in the

experiment to earn extra credit in an undergraduate psychology
course.

Materials. A list of 240 target words, each item comprised of
four to seven letters, along with a related prime word for each
target was constructed by supplementing the list of pairs provided
by Tse and Neely (2007). Half of the word targets were of
relatively high frequency (M " 170,438), and the other half were
of low frequency (M " 16,594), according to frequency norms
generated by the English Lexicon Project database (Balota et al.,
2007). These frequencies are based on a corpus of approximately
131 million word tokens (Lund & Burgess, 1996). The mean
forward associative strength for related prime–target pairs was
.226 for high-frequency targets and .225 for low-frequency targets
(Nelson, McEvoy, & Schreiber, 2004). This degree of associative
strength is similar to the level of associative strength for items
considered to be low strength by Stolz and Neely (1995), who
found additive effects of priming and stimulus quality with low-
strength pairs. A list of 240 pronounceable nonwords was con-
structed and served as nonword targets. They were one or two
syllables and were of similar letter length to the word targets. None
were pseudohomophones, but they followed English orthography.
An English word was selected to serve as a prime for each of these
items. These prime words were similar to those used as primes for
the word targets. An additional 32 prime–target pairs (half word
targets and half nonword targets) were used as practice items.

The list of high- and low-frequency target items was broken into
four sublists of 30 targets of each frequency category. Within each
sublist, a second pairing of primes and targets was created to
produce unrelated prime–target pairs by reassigning primes to
alternative targets within a sublist. Assignment of these sublists
to the four experimental conditions created by factorially varying
prime relatedness (related vs. unrelated) and stimulus quality (clear
vs. degraded) was counterbalanced across subjects so that each
target appeared equally often with its related and with its unrelated
prime in each of the four conditions. Nonwords were broken into
two sublists, and assignment of these lists to clear and degraded
conditions was counterbalanced across subjects.

Procedure. Subjects were tested individually in a quiet room,
seated at computer monitor that was controlled by a Macintosh
computer. They were instructed that their task was to classify a
series of letter strings as words or nonwords. They were informed
that on each trial, a target letter string would appear in uppercase
letters, but it would be preceded by a briefly presented word in
lowercase letters to which no response was to be made. Subjects
lightly held the forefinger of each hand on a response button
mounted on a box that was connected to the computer. A response
with the right hand indicated that the target was a word, and a
left-hand response was used for nonwords.

Each trial began with a fixation cross presented for 250 ms,
followed by a blank screen for 250 ms, then the prime word in
lowercase letters for 200 ms. The target string was then presented
in uppercase and remained in view until a response was made. The
next trial followed immediately after a correct response. If an
incorrect response was made, the message ERROR was presented
on the screen for 1 s. The fixation cross and primes were presented
in black font against a white background, as were targets that were
assigned to the clear stimulus quality condition. For targets in the
degraded condition, the black level of the letters was reduced to
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20% of the maximum darkness possible, yielding a light gray,
low-contrast image.

Subjects were first presented with 32 practice trials with equal
numbers of word and nonword targets, and within each item class,
equal numbers of items were tested in each possible condition. The
practice trials were followed by a randomly ordered sequence of
480 critical trials consisting of 240 word and 240 nonword targets.
Subjects were provided evenly spaced breaks throughout the
course of testing.

Results and Discussion

We begin by presenting a standard analysis of response times
and error rates based on ANOVA, followed by LMM analyses
specifically designed to test the possibility that trial history mod-
ulates the joint effects of word frequency, stimulus quality, and
priming.

Analysis of variance. Response times for word targets less
than 200 ms were classified as spoils and not included in the
analysis. Response times longer than 1,700 ms were excluded as
outliers. This cutoff was chosen so that no more than 0.5% of
correct responses would be excluded (Ulrich & Miller, 1994).
Mean correct response time for word targets in each of the eight
conditions was computed for each subject, and the means obtained
by averaging across subjects are shown in Figure 2. An ANOVA
indicated that all three main effects were significant Fs(1, 71) $
43, ps % .001, with shorter response times in the expected cases:
clear stimulus quality (64-ms effect), related prime (16-ms effect),
and high-frequency target (23-ms effect). None of the interactions
were significant (Fs % 1).

The overall error rate was 3.9%. An analysis of error rates
indicated significant main effects corresponding to the main ef-
fects found in the response time data. In addition, however, there
was a significant interaction between frequency and priming that
did not appear in the response time data, F(1, 71) " 7.59, p % .01.
The pattern of means indicated a larger benefit of related primes
for low-frequency targets (2.4% effect) than for high-frequency
targets (0.7% effect). Mean response times for nonwords were 693
ms in the clear condition and 747 ms in the degraded condition,
and the mean error rate was 5.0%.

The additive joint effects of stimulus quality with frequency and
with priming were anticipated, given prior results and, particularly,
previous studies that used low-strength associates as primes (Stolz
& Neely, 1995). Although the overadditive interaction of priming
and frequency did not appear in response latencies, it was present
in the error data. This outcome could reflect a speed–accuracy
tradeoff that prevented the interaction from emerging in the re-
sponse time data.

Linear mixed-model analysis. The critical question we ad-
dress with the next analysis is whether the additive effects involv-
ing stimulus quality that are apparent in the aggregate data may be
masking interactive effects that are modulated by recent trial
history. In particular, we examined the influence of two charac-
teristics of the immediately preceding trial on the current trial:
whether the previous trial required a word or nonword response
and the stimulus quality of the target on the previous trial.

Dependent variable. Estimates of LMM variance and cova-
riance parameters critically depend on residuals being normally
distributed. Therefore, in a reanalysis of masked priming data
using LMMs, Kliegl et al. (2010) considered a number of methods
of transforming raw response time data to produce a measure for
which model residuals fit a normal distribution. They found that
for lexical decision tasks, a reciprocal transformation applied to
raw response time data yielded residuals that much more closely
approximated a normal distribution than untransformed or log-
transformed response times. Kinoshita et al. (2011) also found the
reciprocal transformation to be the most appropriate one for their
lexical decision data. Consequently, we examined the reciprocal
transformation for the data reported here and found again that it
produced residuals with a good approximation to a normal distri-
bution. The analyses we report, therefore, are based on a reciprocal
transformation of the raw data, specifically !1/RT (where RT
refers to response time measured in seconds) so that higher scores
will continue to correspond to longer response times. Furthermore,
we note that over the past few years, we have analyzed data from
well over 20 experiments using the lexical decision task. Without
exception, the reciprocal transformation yielded residuals that
were in much better agreement with normal distribution assump-
tions than were raw or log-transformed response times.1 Note that
without the multiplication by (!1), reciprocal response time cor-
responds to a perfectly valid metric in physics, namely, speed.

1 We repeated the LMM analyses reported below using response time
instead of the reciprocal transformation and found essentially the same
results. This was true for both Experiment 1 and Experiment 2. A few
interactions that were significant with the reciprocal measure were not
significant in the response time analysis, probably because of lower sta-
tistical power due to heterogeneity of residuals.

Figure 2. Mean response time in Experiment 1 as a function of word
frequency, prime, and stimulus quality. Error bars are 95% within-subject
confidence intervals appropriate for comparing condition means within a
particular stimulus quality condition (Loftus & Masson, 1994; Masson &
Loftus, 2003).
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Perhaps lexical decision effects will prove to be easier to interpret
in general when conceptualized as differences in response speed
rather than as differences in response time.

To examine possible interaction and additive effects between
priming, word frequency, and stimulus quality, the LMM analyses
included these three manipulated variables as fixed effects, along
with the main effects of stimulus quality on the previous trial and
lexical status of the target on the previous trial. In addition to these
five main effects, all of the interactions (from two-way interactions
up to five-way) were included.

Significance criterion. We took as the criterion for signifi-
cance of fixed effects a t ratio of 2.0, following Kliegl et al. (2010).
In LMM, the degrees of freedom for t ratios are not known exactly,
although with the very large number of observations in data sets
such as the ones we report here, the t distribution converges to the
normal distribution. Therefore, using two standard errors as a
significance criterion corresponds closely to the .05 level of sig-
nificance. Before we turn to details about fixed-effect estimates,
we describe how we determined statistically reliable variance
components and correlation parameters associated with them.

Variance components and correlation parameters (random
effects). Along with fixed effects, our LMM allows the estima-
tion of two sets of variance components and correlation parameters
for the random factors of subject and word. In principle and
ignoring interactions between fixed effects, the design afforded the
following parameters for the two random factors. For the subject
factor, there were six variance components (mean response time
[intercept] plus five within-subject effects) and 15 correlation
parameters for the possible correlations between each pair of these
six components. For the random factor word, there were five
variance components (mean response time [intercept] plus four
within-word effects; frequency is a between-word effect) and 10
correlation parameters for correlations between these components.
Counting also the residual variance, the model parameters added
up to a maximum of 37 variance components and correlation
parameters. These were simply too many parameters given our
data, so we proceeded in two steps to determine significant pa-
rameters. In the first step, we determined the significant variance
components by deleting in turn each variance component from a
model containing all variance components and checking for a
significant decrement in goodness of fit using likelihood ratio tests,
the Akaike information criterion, and the Bayesian information
criterion. Models with successively fewer variance components
were tested until it was determined that dropping a particular
variance component produced a significantly worse fit to the data
(see Baayen et al., 2008, and Quené & van den Bergh, 2008, for
detailed examples of how this procedure is applied to LMMs).

LMM results for variance components and correlation param-
eters. The final model included variance components for the
mean speeds for item and subjects (i.e., the intercepts), a variance
component for the priming effect for items (indicating that priming
was differentially successful across items), and variance compo-
nents for the effects of stimulus quality on the current trial and
lexical status of the target on the previous trial for subjects. In
addition, the final model included a correlation parameter for the
random effects of stimulus quality and of intercept for subjects.
This correlation was !.41, indicating that subjects who responded
faster generally showed larger effects of stimulus quality. This
somewhat counterintuitive outcome probably reflects greater reli-

ability in the measurement of stimulus quality effects for subjects
who respond faster (and probably with less variability). These
random effects are summarized in the upper section of Table 1.

Note that the set of random components retained in the best
fitting LMM does not include a component for variation between
subjects with respect to the effect of semantic priming, even
though there were components for variation between subjects in
the effects of stimulus quality on the current trial and lexical status
of the previous trial’s target. The lack of evidence for a random
effect of priming among subjects, suggesting low reliability in our
measurement of priming variability between subjects, is consistent
with the finding of Stolz et al. (2005) that semantic priming effects
have very low reliability. If there were stable, meaningful variation
between subjects with respect to the magnitude of semantic prim-
ing, then the fit of the LMM should have been improved by
including a random subjects effect for priming.

LMM results for fixed effects. The estimated coefficients for
the fixed effects of the final model are shown in the lower part of
Table 1. The fixed effects of the three factors, priming, frequency,
and stimulus quality, were significant, and we observed the same
pattern of additivity among those factors as was seen in the
ANOVA. In addition, however, the lexical status of the target on
the previous trial influenced response time as a main effect: There
was slower responding if the previous target was a nonword.
Moreover, both lexical status and stimulus quality of the previous
trial’s target entered into interactions with the three primary fac-
tors.2

For example, the effect of current stimulus quality was modu-
lated by both the prior target’s lexical status and its stimulus
quality, as indicated by the interaction between prior and current
stimulus quality and the three-way interaction between these two
factors and lexical status of the prior target. The three-way inter-
action is plotted in Figure 3. The plot shows that responding was
faster if the stimulus quality on the previous and current trials was
the same rather than different, but this effect held only when the
previous target was a word. The difficult processing encountered
when the previous target was degraded did not generally slow
response time on the current trial, as might be expected from the
Kinoshita et al. (2008) ASE model, but instead, its influence
depended on the quality of the current trial’s target. This result is
consistent with the implications of the Turner et al. (2011) pro-
posal regarding how stimulus representations are learned and are
influenced by recent trial history. Two degraded word targets can
be considered relatively close on the stimulus strength axis (as
compared, for example, to a degraded word target and a degraded
nonword target), and a signal (word) response to one of these two
word targets may be expected on the Turner et al. account to
elevate the signal response strength of other nearby targets, leading
to a faster response.

2 The occurrence of a response error on a trial immediately preceding
one of the critical trials might introduce some extraneous influence on our
measure of the effects of trial history. To test this possibility, we repeated
the LMM analyses for both Experiment 1 and Experiment 2, omitting
critical trials that were preceded by an error. The results in both cases were
consistent with those we report for data that were not filtered for an error
on Trial N ! 1.
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More importantly, apparent additive effects involving frequency
and the other two primary factors dissolved into interactive rela-
tionships when data were conditionalized on features of the pre-
vious trial’s target. Additivity between frequency and priming
turned out to be composed of two opposite-going interactions that
depended on the quality of the previous target. This dependency
was revealed by an interaction between these two factors and
quality of the previous target and by a four-way interaction that
included lexical status of the previous target. The pattern of this
four-way interaction is shown in Figure 4. Although priming and
frequency were additive when the previous target was a word,
interactions emerged when it was a nonword. Specifically, a typ-
ical overadditive interaction between priming and frequency oc-
curred when the previous nonword target was degraded (see Fig-
ure 4, bottom-right panel), but an underadditive interaction was
seen when the previous nonword target was clear (see Figure 4,

top-right panel). A reparameterization of the LMM with frequency
and priming nested within the four cells defined by the stimulus
quality and lexical status of the target on the previous trial showed
that both of these two-way interactions were significant (ts $ 2.3).
There was no significant interaction when the previous target was
a word (ts % 1). Combining the data across all trials, ignoring trial
history, led to a pseudoadditive pattern in the aggregate. The
overadditive component of this interaction (seen only when the
previous target was a degraded nonword) is consistent with past
literature (e.g., Becker, 1979; Borowsky & Besner, 1993), but the
underadditive outcome is quite surprising.

Although we anticipated the possibility that opposite-going in-
teractions might underlie an additive effect, there is little or no
theoretical guidance for predicting what form these interactions
might take. A speculative possibility is that the process in the Plaut
and Booth (2000) model that relates input and output activation

Table 1
Linear Mixed-Model Estimates of Coefficients, Standard Errors, and t Ratios for Fixed Effects and Variances, Standard Deviations,
and Correlations for Random Effects in Experiment 1

Random effects Variance SD r

Items
Intercept 0.0044 0.0664
Prime 0.0020 0.0451

Subjects
Intercept 0.0261 0.1617
Stimulus quality 0.0042 0.0650 !0.409a

Last-trial target 0.0019 0.0435

Fixed effects Coefficient SE t

Intercept !1.6376 0.0197 !83.29
Frequency 0.0546 0.0097 5.64
Prime 0.0384 0.0054 7.17
Stimulus quality 0.1647 0.0089 18.54
Last-trial stimulus quality 0.0023 0.0045 0.50
Last-trial target 0.0250 0.0069 3.64
Frequency & Prime !0.0033 0.0107 !0.31
Frequency & Stimulus Quality !0.0131 0.0090 !1.46
Prime & Stimulus Quality 0.0050 0.0090 0.55
Frequency & Prime & Stimulus Quality !0.0053 0.0180 !0.29
Frequency & Last-Trial Stimulus Quality 0.0012 0.0091 0.13
Frequency & Last-Trial Target 0.0118 0.0091 1.30
Prime & Last-Trial Stimulus Quality !0.0146 0.0091 !1.60
Prime & Last-Trial Target !0.0037 0.0091 !0.40
Stimulus Quality & Last-Trial Stimulus Quality !0.0344 0.0091 !3.78
Stimulus Quality & Last-Trial Target 0.0085 0.0091 0.94
Last-Trial Target & Last-Trial Stimulus Quality 0.0141 0.0091 1.55
Frequency & Prime & Last-Trial Stimulus Quality 0.0446 0.0182 2.45
Frequency & Prime & Last-Trial Target !0.0032 0.0182 !0.18
Frequency & Stimulus Quality & Last-Trial Stimulus Quality 0.0433 0.0182 2.38
Frequency & Stimulus Quality & Last-Trial Target 0.0010 0.0182 0.06
Prime & Stimulus Quality & Last-Trial Stimulus Quality 0.0195 0.0182 1.07
Prime & Stimulus Quality & Last-Trial Target !0.0246 0.0182 !1.35
Frequency & Last-Trial Stimulus Quality & Last-Trial Target !0.0137 0.0182 !0.75
Prime & Last-Trial Stimulus Quality & Last-Trial Target !0.0113 0.0182 !0.62
Stimulus Quality & Last-Trial Stimulus Quality & Last-Trial Target 0.0924 0.0182 5.08
Frequency & Prime & Stimulus Quality & Last-Trial Stimulus Quality !0.0076 0.0364 !0.21
Frequency & Prime & Stimulus Quality & Last-Trial Target 0.0094 0.0364 0.26
Frequency & Prime & Last-Trial Stimulus Quality & Last-Trial Target 0.1089 0.0364 2.99
Frequency & Stimulus Quality & Last-Trial Stimulus Quality & Last-Trial Target 0.0059 0.0365 0.16
Prime & Stimulus Quality & Last-Trial Stimulus Quality & Last-Trial Target 0.0405 0.0364 1.11
Frequency & Prime & Stimulus Quality & Last-Trial Stimulus Quality & Last-Trial Target 0.0598 0.0729 0.82

a Correlation between intercept and stimulus quality.
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(see Figure 1C) may be sensitive to recent trial events. For exam-
ple, a particularly difficult stimulus, such as a degraded nonword,
may lead to an increase in the amount of evidence required to
produce a response on the next trial. This is one of the principles
incorporated into the ASE model of dynamic changes in response

times (Kinoshita et al., 2011). Requiring more evidence (i.e., a
higher level of output activation for a response) would move the
criterion for responding further up the sigmoid function in Figure
1C, into a region that would produce an overadditive interaction,
as depicted in the figure. A less demanding experience on Trial
N ! 1 might allow the output activation threshold to be lowered,
moving the criterion back down the sigmoid function. Shifting to
a sufficiently low level would create the potential for an un-
deradditive interaction, which was observed when the target on the
preceding trial was a clear nonword. Although this scenario fits
with the case where the previous target was a nonword, no such
dynamic process was in evidence when the target on Trial N ! 1
was a word. We consider below the question of why lexical status
of the previous target might modulate these dynamics.

The additive relationship between frequency and stimulus qual-
ity, a result that is central to the debate about the ability of
computational models to capture additive effects (e.g., Borowsky
& Besner, 2006; Plaut & Booth, 2006), turned out to be the product
of aggregating two, opposite-going interaction effects, as indicated
by the three-way interaction between frequency, stimulus quality,
and stimulus quality of the previous target. This interaction is
shown in Figure 5 and comprises a significant underadditive
interaction when the previous target was clear (see Figure 5, left
panel; t " 2.71) and a nonsignificant but numerically overadditive
interaction between frequency and stimulus quality when the target
on the previous trial was degraded (see Figure 5, right panel; t "
0.67), as indicated by a reparameterization of the LMM with
frequency and stimulus quality nested within levels of last-trial
stimulus quality.

The underadditive interaction between frequency and stimulus
quality obtained when the previous trial’s target was clear (see the
left panel of Figure 5), combined with the underadditive interac-
tion between frequency and stimulus quality reported by Yap et al.
(2008), raises the distinct possibility that the underadditivity pro-
duced in some simulations with the Plaut and Booth (2000) model
(e.g., Besner et al., 2008) might be a valid reflection of behavior.
As with the combination of over- and underadditivity seen with
frequency and priming, the modulation of the frequency by stim-

Figure 5. Mean transformed response time in Experiment 1 as a function
of frequency and stimulus quality for the current target and stimulus quality
of the target on the previous trial. Error bars are estimated 95% within-
subject confidence intervals appropriate for comparing condition means.

Figure 3. Mean transformed response time in Experiment 1 as a function
of stimulus quality of the target and stimulus quality and lexical status of
the target on the previous trial. Error bars are estimated 95% within-subject
confidence intervals appropriate for comparing condition means.

Figure 4. Mean transformed response time in Experiment 1 as a function
of frequency and prime condition for the current target and stimulus quality
and lexical status of the target on the previous trial. Error bars are estimated
95% within-subject confidence intervals appropriate for comparing condi-
tion means.
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ulus quality interaction could, in principle, be captured in a model
like the Plaut and Booth connectionist model. With a difficult
(degraded) target on the previous trial, the response threshold
might be elevated, requiring stronger output for a response. This
setting would move the system to a higher point on the sigmoid
function shown in Figure 1C, near a region in which overadditivity
is seen. When the prior target was less demanding (clear), the
threshold might be reduced, bringing the system into the region of
the activation function that yields underadditivity.

Including trial as a covariate in the LMM. The results
described in the previous section clearly document that character-
istics of the previous trial (i.e., the lexical status and the stimulus
quality of the last target) exert strong effects on response speed in
the current trial. According to Turner et al. (2011), subjects may
develop stimulus representations over time, and this learning in-
creases the ability to discriminate between stimulus classes—
words and nonwords. We investigated the possibility that these
effects would change across trials in the experiment. In a second
LMM, we added trial number (centered, so that the middle trial
was coded as zero) and its interactions as a sixth factor to the
primary model described above to assess condition-specific
change in response time over the course of the entire experiment.
This analysis indicated that trial number interacted with lexical
status of the target on the previous trial. Response time to word
targets did decrease over trials, but only if the previous trial’s
target was a word (see Figure 6). The t ratio for the effect of trial
number when the previous trial had a word target was substantial
(t " !6.26), whereas the effect was clearly not significant when
the immediately preceding target was a nonword (t % 1). None of
the other interactions with trial were significant. These data indi-
cate that the tendency to respond more efficiently to word targets
as subjects gained more experience with the task and with the
nature of the stimuli was strongly modulated by recent trial history.

The sensitivity of improvement across trials to the lexical status
of the previous trial’s target offers possible insight into the four-
way interaction involving frequency and priming shown in Fig-
ure 4. That interaction revealed that the relationship between

frequency and priming was modulated by the stimulus quality of
the previous target, but only if that target was a nonword. This
finding, combined with the trial effects shown in Figure 6, sug-
gests that the application of dynamic adjustments to the word-
recognition system, such as altering response thresholds, may be
modulated by ongoing events. In particular, with consecutive
presentation of word targets, the system appears to become in-
creasingly efficient. In contrast, when a nonword target appears,
the efficiency gains evident following a word target appear to be
lost, a phenomenon that we suggest is comparable to the increased
caution that contributes to post-error slowing (e.g., Allain et al.
2009; Dutilh et al., 2012; Rabbitt, 1966, 1989). We suggest that the
presentation of a nonword target may interrupt the relatively
smooth processing that develops when consecutive word targets
are experienced and that adjustments to decision processes are
made to reduce the possibility of an error. A similar principle is
used to guide response initiation processes in the ASE model
(Kinoshita et al., 2008, 2011).

Experiment 2

In Experiment 1, we found that recent trial history, embodied by
the characteristics of the target on the immediately preceding trial,
altered something as fundamental as the improvement in perfor-
mance across trials. Moreover, the stimulus quality of the previous
trial’s target modulated the relationship between frequency and the
other two primary factors, priming and stimulus quality. Such a
complex constellation of results required a follow-up to assess its
reliability and generalizability. Therefore, in Experiment 2, we
investigated the question of whether this modulation was the result
of an ineluctable characteristic of the word-processing architecture
or instead was the product of dynamic adaptation to varying trial
difficulty, in line with models such as the ASE (Kinoshita et al.,
2008, 2011) or the Turner et al. (2011) account of learning stim-
ulus representations. Rather than randomly mixing clear and de-
graded targets, subjects in Experiment 2 experienced these two
types of display in separate blocks of trials. With this arrangement,
subjects would not be exposed to trial-by-trial variation in pro-
cessing difficulty arising from stimulus degradation, although
there would still be potential variation due to lexical status of the
target on the previous trial. Finally, we also aimed to demonstrate
reliable individual differences in semantic priming effects, given a
task context without random trial-by-trial fluctuation in stimulus
quality.

Method

Subjects. Seventy-two new subjects drawn from the same
source as in Experiment 1 participated in the experiment.

Materials and procedure. The same materials and procedure
were used as in Experiment 1, except that clear and degraded
targets were presented in two separate blocks, each consisting of
16 practice trials and 240 critical trials. The order of presentation
of the two blocks was counterbalanced across subjects.

Results and Discussion

Analysis of variance. Response times were filtered as in
Experiment 1, with the upper bound set at 1,600 ms so as to

Figure 6. Mean transformed response time in Experiment 1 as a function
of trial number and lexical status of the target on the previous trial.
Continuous error bars (shown as gray bands around trend lines) are 95%
within-subject confidence intervals appropriate for comparing condition
means.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

907MODULATION OF EFFECTS BY TRIAL HISTORY



exclude no more than 0.5% of the correct responses as outliers.
Mean correct response times are shown in Figure 7. An ANOVA
with frequency, prime condition, and stimulus quality as repeated
measures factors indicated that all three main effects were signif-
icant, Fs(1, 71) $ 35, ps % .001. In addition, there was an
overadditive interaction between frequency and prime, indicating
larger priming for low-frequency targets, F(1, 71) " 7.10, p % .01.
None of the remaining interactions were significant. Although the
pattern of means in Figure 7 suggests that the Frequency & Prime
interaction was restricted to degraded targets, implying a three-
way interaction, that interaction was not significant, F(1, 71) "
2.08, p $ .15.

The overall error rate was 3.1%. An ANOVA applied to these
data found significant main effects of frequency and prime, Fs(1,
71) $ 13, ps % .01, but the stimulus quality effect was not
significant, F(1, 71) " 3.02, p " .09. There was one significant
interaction, which was an underadditive pattern involving prime
and stimulus quality, whereby the priming effect was larger for
clear targets (1.5% vs. 0.5%), F(1, 71) " 5.72, p % .05. Mean
response time for nonword targets was 672 ms for the clear
condition and 718 ms for the degraded condition, and the overall
error rate was 4.3%.

In summary, the response time data replicated the typical inter-
action between frequency and prime. Even though there was an
additive relationship between prime and stimulus quality in re-
sponse times, the error data present a complication in the form of
an underadditive interaction between these two factors. The inter-
action could reflect a ceiling that subjects placed on their willing-
ness to make response errors, so that the error rate in the most
susceptible condition (unrelated prime–degraded target) did not
reach what otherwise might have been its full extent. This sugges-
tion is similar to one of the accounts of the underadditive interac-
tion between frequency and stimulus quality that Yap et al. (2008)

offered for their finding with response time data. Yet if this were
so, then it implies that going beyond the imposed error rate ceiling
would be associated with faster responding in the unrelated–
degraded condition. That change would, in turn, potentially gen-
erate an underadditive interaction in the response time measure.
The interpretation of the prime by stimulus quality interaction in
error rates, then, is unclear. Given that the error rates were very
low overall, with many cells (43%) having zero errors, the inter-
action may be a Type I error.

Linear mixed-model analysis. The LMM analysis was ap-
plied to response data after they were converted using the recip-
rocal transformation (!1/RT), as in Experiment 1. Stimulus qual-
ity of the previous trial’s target was not included as a factor in this
analysis because that factor was a blocked manipulation and stim-
ulus quality did not vary from trial-to-trial within a block. All of
the other fixed effects and interactions included in the LMM
analysis reported in Experiment 1 were included in the present
analysis. Using the same method as in Experiment 1, we deter-
mined which variance components warranted inclusion in the final
model based on adequacy of the fit to the data.

LMM results for variance components and correlation param-
eters. In the final model, the retained variance components were
the item and subject intercepts, the effect of prime for items, and
the effects of stimulus quality and lexical status of the target on the
previous trial for subjects. All of these random effects were also
included in the optimal model for Experiment 1. In addition, the
model for Experiment 2 included random effects of frequency and
prime for subjects, as well as a parameter for the correlation
between prime and intercept for subjects. Details of the random
effects are shown in the upper section of Table 2. The estimate of
the correlation parameter (!.51) indicates that the effect of prim-
ing was larger for subjects who responded faster. As with the
correlation between stimulus quality and response speed in Exper-
iment 1, we suggest that the reliability of the data is greater for
faster subjects.

Although the variance component for the random effect of
priming for subjects was quite small (indeed, it was the smallest
random effect obtained in either experiment), it significantly im-
proved the fit of the LMM. These results indicate that with a
sufficiently sensitive measure of individual differences, evidence
can be obtained for stable sources of variation in the magnitude of
semantic priming. We note that with a prime–target SOA of 200
ms and a prime relatedness proportion of .5 (as was used here),
Stolz et al. (2005) found a low but significant split-half reliability
estimate for semantic priming. In addition, the significant corre-
lation we obtained between priming effect size and overall speed
of responding indicates that there is sufficient reliability in mea-
sures of semantic priming to establish relationships with other
variables. This finding, in turn, encourages further examination of
possible mechanisms underlying individual differences in seman-
tic priming.

LMM results for fixed effects. The estimated coefficients for
the fixed effects of the optimal model in Experiment 2 are shown
in lower section of Table 2. The t ratios shown in the table indicate
that along with the significant main effects of all three primary
factors and the effect of the previous target’s lexical status, there
was an interaction between frequency and prime, matching the
overadditive interaction seen in the ANOVA and in Figure 7
reported earlier. In addition, however, the four-way interaction was

Figure 7. Mean response time in Experiment 2 as a function of word
frequency, prime, and stimulus quality. Error bars are 95% within-subject
confidence intervals appropriate for comparing condition means within a
particular stimulus quality condition.
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significant. The pattern of means in this interaction is shown in
Figure 8 where the means are plotted to highlight the potential
interaction patterns between frequency and stimulus quality. The
existence of a four-way interaction implies that these two factors
are not consistently additive, contrary to what is suggested by the
analysis of aggregated data reported above.

Indeed, it can be seen in Figure 8 that there are two contexts
(word target on previous trial, related prime on current trial;
nonword target on previous trial, unrelated prime on current trial)
where there appears to be an underadditive interaction between
word frequency and stimulus quality. Combining these two con-
texts to examine that interaction yielded a significant effect (t "
!2.51). For the other two contexts, no significant interaction
between word frequency and stimulus quality was obtained either
when the contexts were considered separately or when combined.
The weak tendency toward an overadditive interaction when the
prior target was a word and the current trial’s prime was unrelated
(t " 1.38) appears to have helped to prevent an overall frequency
by stimulus quality interaction from emerging.

The underadditive interactions that appear in two of the panels
of Figure 8 occurred under circumstances that represent particu-
larly fast and particularly slow responding. This pattern is difficult
to explain, even with a flexible framework such as the Plaut and
Booth (2000) model. For the case in which the current target has
a related prime and the previous target was a word, which is where
the fastest responses were made, one could imagine that the
required level of output activation for a response might be rela-

tively low, which means the system is operating in a region of the
input–output activation function that is amenable to an underaddi-
tive interaction. Yet the other circumstance in which underaddi-
tivity was found, prior nonword target and unrelated prime, is
associated with slow responses. That feature suggests that rela-
tively more evidence is required for responding, which would
presumably move the system further along the input–output acti-
vation function, out of the region where an underadditive interac-
tion would be expected. We have no compelling explanation for
this somewhat anomalous outcome, but one possibility is that it is
the product of a ceiling effect on response time in the slowest
condition (low frequency, degraded target). As can be seen in
Figure 8, response times were longer in this condition than in any
other.

Including trial as a covariate in the LMM. As was done in
Experiment 1, we examined the change in response time across
trials by including trial number as a covariate along with its
interactions with the other independent variables. Trial number ran
from the first trial of the first block (clear targets for half of the
subjects, degraded targets for the other half) to the last trial of the
second block. As in Experiment 1, the lexical status of the target
on the previous trial strongly modulated the improvement in re-
sponse time across trials. This result is illustrated in Figure 9. Note
that although response time decreased over trials when the previ-
ous target was a word (t " !2.07), the opposite trend held when
the previous target was a nonword (t " 2.07). This analysis was
repeated with stimulus quality of the current target as a factor and

Table 2
Linear Mixed-Model Estimates of Coefficients, Standard Errors, and t Ratios for Fixed Effects
and Variances, Standard Deviations, and Correlations for Random Effects in Experiment 2

Random effects Variance SD r

Items
Intercept 0.0042 0.0651
Prime 0.0014 0.0371

Subjects
Intercept 0.0262 0.1617
Frequency 0.0011 0.0328
Prime 0.0008 0.0280 !0.507a

Stimulus quality 0.0073 0.0853
Last-trial target 0.0038 0.0619

Fixed effect Coefficient SE t

Intercept !1.7011 0.0194 !86.60
Frequency 0.0422 0.0103 4.12
Prime 0.0445 0.0060 7.41
Stimulus quality 0.1375 0.0110 12.54
Last-trial target 0.0531 0.0085 6.22
Frequency & Prime 0.0204 0.0100 2.04
Frequency & Stimulus Quality !0.0122 0.0088 !1.39
Prime & Stimulus Quality 0.0019 0.0088 0.21
Frequency & Prime & Stimulus Quality 0.0166 0.0176 0.95
Frequency & Last-Trial Target !0.0008 0.0089 !0.09
Prime & Last-Trial Target !0.0014 0.0089 !0.15
Stimulus Quality & Last-Trial Target 0.0013 0.0089 0.15
Frequency & Prime & Last-Trial Target !0.0148 0.0178 !0.83
Frequency & Stimulus Quality & Last-Trial Target !0.0183 0.0178 !1.03
Prime & Stimulus Quality & Last-Trial Target !0.0230 0.0178 !1.30
Frequency & Prime & Stimulus Quality & Last-Trial Target !0.0770 0.0355 !2.17

a Correlation between intercept and prime.
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trials running only from the first to the last trial within a block (i.e.,
1–240), given that stimulus quality was a blocked factor in this
experiment. The same pattern of change across trials was seen for
both levels of stimulus quality, with no interaction between stim-
ulus quality, trial, and lexical status of the previous target. The
improvement seen when the previous target was a word is consis-
tent with the results of Experiment 1, but the slowing over trials
when the earlier target was a nonword is novel and surprising. It
suggests that even though an error is not committed, responding
positively to a word target may be done with elevated caution
because of the heightened sensitivity to the possibility of an error
occasioned by handling a nonword target. Given that this result did
not appear in Experiment 1, however, it would be prudent to wait
for replications of this result before drawing strong conclusions as
to its meaning.

General Discussion

The primary result obtained in the two experiments reported
here is the contrast between apparently additive effects obtained in
aggregated data and the underlying interactions (both over- and
underadditive) between these same effects when the data were
examined with respect to recent trial history. In both Experiments
1 and 2, aggregate data indicated that the effects of word frequency

and stimulus quality were additive, in keeping with previous
findings (e.g., Becker & Killion, 1977; Stanners et al., 1975; Yap
& Balota, 2007). However, the LMM analyses revealed that in
both cases, these additive patterns were generated by underlying
interactive effects that were modulated by recent trial history.
Variations in the pattern of interaction between word frequency
and both semantic priming and stimulus quality were demon-
strated.

We have suggested that these modulations potentially can be
captured in a model such as the Plaut and Booth (2000) connec-
tionist model of word recognition by assuming that experience on
a particular trial can influence the evidence threshold required for
responding on the next trial, similar to what is assumed in the ASE
model of dynamic adjustment of response initiation (Kinoshita et
al., 2008, 2011). Changes in threshold correspond to changes in
degree of output activation needed for responding. As shown in
Figure 1C, the sigmoid function relating input to output activation
can generate additive, overadditive, or underadditive relationships
between factors, depending on the region of the activation function
that maps onto the current level of required evidence (output
activation). According to the Besner et al. (2008) simulation re-
sults using the Plaut and Booth model, an underadditive interaction
between frequency and stimulus quality was obtained when a
relatively weak manipulation of quality was applied, but additivity
and then an overadditive interaction were obtained in that simu-
lation as the manipulation was amplified. In our experiments,
however, the strength of the stimulus quality manipulation was
constant and therefore cannot be mapped onto the conditions under
which we obtained additivity and interactions. It was not the nature
of the manipulation of stimulus quality that modulated the rela-
tionships between factors that we observed, but instead recent trial
history. One of the challenges, then, in adapting a model such as
that of Plaut and Booth to accommodate results like those reported
here is to develop a principled account of dynamic responses to
recent trial events and of how the application of cognitive control
over these responses is regulated (e.g., Botvinick, Braver, Barch,
Carter, & Cohen, 2001).

Figure 9. Mean transformed response time in Experiment 2 as a function
of trial number and lexical status of the target on the previous trial.
Continuous error bars (shown as gray bands around trend lines) are 95%
within-subject confidence intervals appropriate for comparing condition
means.

Figure 8. Mean transformed response time in Experiment 2 as a function
of frequency, prime condition, and stimulus quality for the current target
and lexical status of the target on the previous trial. Error bars are estimated
95% within-subject confidence intervals appropriate for comparing condi-
tion means.
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Another challenge is to determine how a computational model
might accommodate the degree of processing flexibility implied by
the dynamic changes in relationships between variables seen in our
experiments. For example, the four-way interaction depicted in
Figure 4 shows all three possible relationships between word
frequency and semantic priming (additivity, overadditivity, and
underadditivity). Although the sigmoid function shown in Figure
1C can generate all three patterns, there is a problem. Namely, the
two types of trial history that produced the two interaction effects
in Figure 4 both involve relatively long response times. The
conditions yielding additivity have shorter response times. On a
simple interpretation of the input–output activation function in
Figure 1C, the average response time in the conditions that pro-
duce additivity should lie between the response times for the over-
and underadditive conditions. Clearly, this is not what we found.
Another component would have to be added to the model to
accommodate the set of results seen in Figure 4. As one example,
we suggest that the input–output activation function may itself be
dynamic, such that the slope of the function might become more
shallow in cases where caution is warranted or processing is more
challenging. This notion is depicted in Figure 10, which embodies
the assumption of a slower rising activation function when the
previous trial presented a nonword target. On those trials, more
input strength is required to produce a response (presumably
increasing overall response time). As shown in the figure, this
modification creates a system in which what is experienced on the
previous trial can lead to different interaction patterns.

Trial-to-Trial Influences on Practice Effects

A particularly striking feature of our results is the demonstration
that something as fundamental as improvement with practice
across trials is strongly modulated by differences between succes-
sive trials. In both experiments, we found that improvements in
speeded lexical decisions to word targets were seen only when the

previous trial’s target was also a word. When the previous target
was a nonword, either no improvement (Experiment 1) or even an
elevation in response time (Experiment 2) was seen as the exper-
iment progressed. These findings raise interesting questions about
the mechanisms underlying skill learning and models of those
processes. Improvement with practice generally follows a power
law, with the logarithm of response time decreasing as a linear
function of the logarithm of practice trial number (A. Newell &
Rosenbloom, 1981).

Our results indicate that this lawful relationship may not hold
and might even be reversed, depending on what occurred on the
previous trial. It would be of substantial interest to determine
which components of skill acquisition underlie such contingencies.
Moreover, Logan (1988) developed a detailed mathematical model
of instance-specific learning that he applied to the lexical decision
task. The model provided an account of the power function
speed-up when responding to repeatedly presented items by as-
suming that subjects relied on memory for prior instances involv-
ing those items. Both word and nonword items showed these
systematic effects, but our findings raise the possibility that item-
specific learning functions may be modulated by the nature of the
previous trial’s target. If so, then models of memory-based skill
acquisition (e.g., Logan, 1988; Rickard, 2004) would have to be
revised.

Implications for Processing Architecture

At present, we lack explanatory frameworks powerful enough to
generate a priori expectations about how trial history should in-
fluence interactive effects of manipulations such as frequency,
stimulus quality, and priming. The current approach to explaining
patterns of additivity and interaction has been dominated by at-
tempts to choose between different architectural assumptions
about processing modules. For example, in the Plaut and Booth
(2000, 2006) connectionist model, changes in interaction patterns
can be attributed to variation in activation levels along the sigmoid
function relating input to output of processing units. In the additive
factors approach championed by Besner and colleagues (e.g.,
Besner et al., 2008, 2010; Yap et al., 2008), flexibility in the
application of a thresholding or normalization mechanism when
processing degraded input accounts for observed relationships
between factors that may or may not be additive.

It is unclear, however, whether dynamic adjustments to process-
ing architecture will be the most fruitful approach to explaining the
modulation of additivity and interaction between factors. Indeed,
serious questions have been raised about whether we can empiri-
cally distinguish between predictions of discrete-stage models and
continuous processing models (McClelland, 1979; Stafford & Gur-
ney, 2011; Thomas, 2006). An alternative direction endorsed by
the present results is grounded in an examination of the influence
of trial history on processing dynamics. Models like the ASE
(Kinoshita et al., 2008, 2011) that provide coherent accounts of
how recent trial events can influence decisional processes may turn
out to be especially useful. In approaches such as these, the critical
issue is not dynamic changes in architectural operation but, in-
stead, modulation of response initiation processes. In the ASE,
recent trial history provides an estimate of how rapidly information
about a stimulus can be assumed to accumulate and therefore about
approximately when it would be safe to make a speeded response

Figure 10. Schematic representation of an adjustable input–output acti-
vation function. The variant on the left is invoked when the previous trial’s
target was a word, and the version on the right is invoked when the
previous target was a nonword. In the latter case, more input activation
(and time) is required to achieve a particular amount of output activation
relative to the version of the function on the left. Additive effects (e.g., of
frequency and priming) can be generated by the left function under re-
sponse times that are shorter (and input values that are lower) than those for
the right function when it generates under- and overadditive effects.
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without too much risk of an error. In this model, there are condi-
tions under which easy items are more sensitive to trial history
than are hard items (the opposite relationship is not predicted by
the model). The underadditive interaction between frequency and
stimulus quality in Experiment 1, resting as it does on modulation
of high-frequency word targets in particular, may reflect this
differential sensitivity.

A related approach to accounting for patterns of additivity and
interaction emphasizes the nature of stimulus representations that
enter into decision processes. As we have discussed, Turner et al.
(2011) proposed that changes in task performance across trials,
including the influence of recent trial history, are determined in
part by the development of stimulus representations. We suggest
that differential learning about stimuli, potentially as a function of
any of the three major factors considered here, can contribute to
the nature of the relationship observed between those factors
without appeal to any modulation of processing architecture. Al-
though the Turner et al. model has been developed to account for
performance accuracy, not response time, they pointed out that
other models exist that account for how response latency is af-
fected by stimulus representations that change over time (e.g., Lee
& Dry, 2006; B. R. Newell & Lee, 2011).

A specific example of how finding additivity or interaction in
response time data may depend on the way in which stimuli are
coded was demonstrated in modeling work reported by Stafford
and Gurney (2011). They simulated the influence of color satura-
tion on the congruency effect in single-stage and discrete-stage
variants of a model of the standard color-word Stroop effect
(Cohen, Dunbar, & McClelland, 1990). Their results showed that
a single-stage model, with no separate, thresholded processing
stage to delay input to a decision stage for the sake of cleaning up
perceptual input, produced additivity between color saturation and
congruency, as seen in behavioral data (Stafford, Ingram, & Gur-
ney, 2011). The additive effect was achieved by binding the color
and word inputs submitted to the model. That is, the intensity of
the word representation provided to the model was tied to the
intensity (saturation) of the color representation. Even the
discrete-stage variant of the Cohen et al. (1990) model was able
to produce additivity between color saturation and congruency
only when this binding of color and word representations was
implemented. Given these simulation results, Stafford and Gur-
ney suggested that “no simple inference from factor additivity,
or its absence, to underlying architecture is possible” (Stafford
& Gurney, 2011, p. 7).

Coupled with these simulation results, our finding that aspects
of recent trial history can be a crucial determinant of whether one
observes interactive or additive effects between factors indicates
that a new way of interpreting the implications of such effects is
needed. Theoretical developments of this nature will depend on
building a clearer understanding of how trial history influences
current trial performance. To this end, the next step should be to
simplify the task environment by manipulating fewer independent
variables than we have examined here. Indeed, preliminary assess-
ment of trial history effects in the word-naming task with no
semantic primes found only weak evidence for the influence of
trial history on interactions between frequency or spelling-sound
regularity and stimulus quality (D. Besner & S. O’Malley, personal
communication, May 14–15, 2012). Additional experiments with
substantial power and designs involving just a pair of critical

factors should provide helpful constraints on the nature of trial
history effects.

In general, we suggest that additivity and interaction between
factors may have stronger implications for the nature of stimulus
coding or decision processes than for the architectural components
of processing operations. Moreover, aggregating data when exam-
ining the relationships between factors may mask theoretically
important undercurrents pertaining to trial history and stimulus
representations and consequently may produce additive effects that
turn out to be artifactual. We believe that further efforts to develop
computational models of how trial-to-trial variations in stimulus
characteristics affect response time and accuracy will be very
fruitful.
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