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Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test 
theoretical claims about the cognitive architecture of word reading processes.  Additive effects among these 
factors have been taken as evidence for discrete-stage models of word reading.  We present evidence from linear 
mixed-model analyses applied to two lexical decision experiments indicating that apparent additive effects can be 
the product of aggregating over- and underadditive interaction effects that are modulated by recent trial history, 
particularly the lexical status and stimulus quality of the previous trial's target.  Even a simple practice effect 
expressed as improved response speed across trials was powerfully modulated by the nature of the previous target 
item.  These results suggest that additivity and interaction between factors may reflect trial to trial variation in 
stimulus representations and decision processes rather than fundamental differences in processing architecture. 
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 Many formal models of word reading processes 
assume the existence of separate processing modules 
that are responsible for computing different types of 
information (e.g., deriving orthography from visual 
input; computing phonology from orthographic 
patterns; selecting semantic information that 
corresponds to a presented word).  A fundamental issue 
in the design of such models is the manner in which 
information is shared between the constituent modules.  
It is commonly assumed that input between processing 
modules is cascaded, so that partial information moves 
between modules even before a module has completed 
its operations (e.g., McClelland, 1979), and most 
current models of visual word identification include 
feedback from higher (e.g., lexical) to lower (e.g., 
letter) levels of processing (e.g., Coltheart, Rastle, 
Perry, Langdon, & Ziegler, 2001; Perry, Ziegler, & 
Zorzi, 2007; Plaut & Booth, 2000). 
 These architectural features play an important role 
in allowing computational models to simulate some 
fundamentally  important  behavioral  results  involving 
 
 

 This research was supported by a discovery grant to 
Michael Masson from the Natural Sciences and Engineering 
Research Council of Canada and a grant to Reinhold Kliegl 
from the Deutsche Forschungsgemeinschaft.  Data and R 
scripts for all analyses are available upon request and at the 
Potsdam Mind Research Repository, http://read.psych.uni-
potsdam.de/PMR2/.  We thank Marnie Jedynak for assistance 
with data collection and Derek Besner, Dennis Norris, and an 
anonymous reviewer for insightful comments on this work. 
 Correspondence concerning this article should be addressed 
to Michael Masson, Department of Psychology, University of 
Victoria, P.O. Box 1700 STN CSC, Victoria, British 
Columbia V8W 3P5, Canada, or to Reinhold Kliegl, 
Department of Psychology, University of Potsdam, Karl-
Liebknecht-Str. 24-25, 14476 Potsdam, Germany.  E-mail:  
mmasson@uvic.ca or kliegl@uni-potsdam.de 

word identification tasks, and in particular, interactions 
between independent variables that influence the speed 
with which words are identified.  In word identification 
tasks such as naming aloud or lexical decision, 
semantic priming of target words is enhanced if the 
targets are presented in a visually degraded form such 
as low contrast (e.g., Becker, 1979; Borowsky & 
Besner, 1991, 1993; Stanovich & West, 1983).  The 
typical form of this interaction is overadditive, whereby 
the influence of semantic priming is greater when 
performance is slowed by a low-contrast stimulus.  In 
general, an overadditive interaction is one in which the 
simultaneous influence of two independent variables is 
larger than what would be expected by a simple 
summation of their individual effects.  For example, 
unrelated primes and low stimulus quality both slow 
responding relative to related primes and high stimulus 
quality, respectively.  When combined, the two former 
conditions may yield an increase in response times that 
is larger than would be produced by adding their two 
separate effects. 
 An example of how an overadditive interaction 
may be generated is illustrated in Figure 1A, where the 
influences of stimulus quality and priming on the 
accumulation of evidence and setting of response 
thresholds are shown.  This depiction is consistent with 
Morton's (1969) logogen model, in which it is assumed 
that evidence in support of a particular word accrues 
over time and when the amount of evidence surpasses a 
threshold, a response (e.g., naming the word or a 
positive lexical decision) can be made.  In Figure 1A, 
evidence accumulates more rapidly for a clear stimulus 
than for a degraded one, so the evidence threshold 
needed for a response is reached sooner.  In the logogen 
model, the effect of semantic priming is to lower the 
response threshold for a primed word and this idea is 
represented in Figure 1A as a lower amount of evidence  
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Figure 1.  Schematic representation of accrual of evidence (A 
and B) or activation strength (C) under manipulations of 
stimulus quality (solid lines = clear, dashed lines = degraded)  
and semantic priming (R = related, U = unrelated).  In A and 
B, the effect of stimulus quality is shown as a difference in 
slope or a difference in onset, respectively.  Semantic priming  
affects the evidence threshold needed for a response.  In C, 
the strength of input is affected by stimulus quality (weaker 
input for degraded stimuli, UD and RD, than for clear stimuli, 
UC and RC) and by semantic priming (weaker input for 
unrelated primes).  The shape of the input-output function and 
the location of input activations along that function determine 
the combined effects of these two variables.  See the text for 
an explanation of the effects produced by these models.  (A 
and B are adapted from Borowsky & Besner, 1993; C is 
adapted from Plaut & Booth, 2000.) 
 
required for a response when a related prime is 
presented.  The faster rate of evidence accrual for clear 
targets leads to a smaller priming effect (T2 - T1) than 
for degraded targets (T4 - T3), as shown in the figure. 
 Another possibility, in keeping with the idea of 
additive factors (Roberts & Sternberg, 1993; Sternberg 
1969), is that degrading the stimulus may delay the start 
of evidence accrual (perhaps to allow for stimulus 
"clean-up"), but once started, the rate is the same as for 
clear targets.  As shown in Figure 1B, these 
assumptions lead to additive effects of stimulus quality 
and priming. 
 A particularly flexible approach to account for 
combined effects of independent variables is 
exemplified by the Plaut and Booth (2000) 
connectionist model of word processing.  In this model, 
it is assumed that evidence from visual input is 
combined with contextual evidence such as semantic 
primes to generate input to a processing module that 
produces output leading to a response.  The function 
relating input to output activation is sigmoidal, as 
shown in Figure 1C.  Response time differences are 
determined by differences in the level of output 
activation.  Depending on the degree of input 
activation, factors such as stimulus quality and semantic 
priming may yield interactive or additive effects.  
Figure 1C illustrates an overadditive interaction, in 
which priming is larger for degraded targets because 
input activation for those  
targets operates in a relatively steep section of the 
activation function.  If both target types had input 
values in that steep, virtually linear region (imagine 
shifting the input values to the left in Figure 1C), an 
additive effect would be produced.  Interestingly, if the 
input activation values were pushed to even lower 
levels so that the earliest part of the activation function 
were involved, an underadditive interaction would be 
generated, with larger priming effects found among 
clear targets. 
 The fact that computational models, such as the 
Plaut and Booth (2000) connectionist model, may 
produce different patterns of interaction or additivity 
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depending on the overall level of activation (Borowsky 
& Besner, 2006) raises an interesting possibility.  
Namely, an observed additive relationship in behavioral 
data may arise because of a combination of two 
different patterns of interaction that, when aggregated, 
yield no indication of an interaction.  Some third factor, 
not considered in standard computational models, may 
be responsible for modulating the interaction, leading to 
a spurious additive pattern.  In the experiments reported 
here, we demonstrate that features of the target on the 
previous trial in an experiment induce such pseudo-
additive patterns.  The resulting three-way interaction, 
including trial history as a factor, that ensues from a 
pair of two-way interactions of opposite pattern may 
serve as a challenge for future development of 
computational models of word recognition. 
 
Models of Interactive and Additive Effects 

 
 The capability of simulating interactive effects 
with computational models that assume feedback 
between modules (e.g., Plaut & Booth, 2000), 
integration of information from independently 
operating modules (e.g., Massaro & Cohen, 1991), or 
combined effects of threshold setting and evidence 
accumulation rate (Morton, 1969), may become a 
liability when one considers factors that typically do not 
interact, such as word frequency and stimulus quality 
(e.g., Becker & Killion, 1977; Stanners, Jastrzembski, 
& Westbrook, 1975; Yap & Balota, 2007) or the 
existence of instances in which factors that usually 
interact, such as priming and stimulus quality, are 
additive (e.g., Brown & Besner, 2002; Ferguson, 
Robidoux, & Besner, 2009; Robidoux, Stolz, & Besner, 
2010; Stolz & Neely, 1995).  Even putting aside the 
question of the type of control structure needed to allow 
a computational model to shift between generating 
interactive and additive effects of factors on word 
identification, a critical issue is whether these models 
are able to produce additive effects at all. 
 Besner and colleagues (Besner & O'Malley, 2009; 
Besner, Wartak, & Robidoux, 2008; Borowsky & 
Besner, 2006) and Plaut and Booth (2006) have 
examined the ability of the Plaut and Booth (2000) 
connectionist model, which includes interactive 
feedback between modules, to simulate additive effects 
of word frequency and stimulus quality.  A critical 
aspect of this model is that response latency is a linear 
function of the output of processing units in the model's 
semantic module, and that output activation is a 
sigmoid function of the strength of input into the units 
of that module.  Plaut and Booth (2006) were able to 
simulate additive effects of word frequency and 
stimulus quality by restricting the level of input to the 
semantic module to be within a certain range (the linear 
region of a sigmoid-shaped activation function that 
translates input activation to output activation).  Besner 

et al. (2008) demonstrated, however, that in the Plaut 
and Booth model, as the strength of the simulated 
manipulation of stimulus quality increased, the pattern 
of effects changed from an underadditive interaction 
(stronger influence of stimulus quality on high-
frequency words than on low-frequency words) to 
additivity and then to an overadditive interaction 
(stimulus quality had a larger impact on low-frequency 
words).  Besner et al. noted that the underadditive 
interaction was a result that has not been seen with 
skilled readers and it was deemed problematic that the 
model generated such a result. 
 Ziegler, Perry, and Zorzi (2009) examined the 
relationship between stimulus quality and word 
frequency in the context of the Perry et al. (2007) 
connectionist dual-process model (CDP+) of word 
reading.  In this dual-route model, words may be read 
either through a lexical route (learned orthographic 
patterns directly activate lexical entries) or a nonlexical 
route in which a phonological code is assembled from 
orthographic input.  Processing in the nonlexical route 
is thresholded so that activation of units at the letter 
level must reach a minimum threshold before activation 
is passed on to the grapheme level.  If processing of 
letter strings is dominated by the nonlexical route, 
additivity between stimulus quality and word frequency 
can arise because the effects of reduced stimulus quality 
can be resolved at the letter level before input is passed 
to later processing modules.  This stage-wise processing 
configuration is critical in producing additive effects 
(Borowsky & Besner, 2006).  Ziegler et al. argued that 
in the word naming task, if pure word lists are used, 
then both the lexical and the nonlexical routes would 
contribute to the computation of a target word's 
pronunciation.  Because the lexical route is not 
thresholded, an overadditive interaction between word 
frequency and stimulus quality (low-frequency words 
show larger effects of stimulus quality) was produced 
by the model.  A mixed list of words and nonwords, 
however, was argued to lead to a de-emphasis of the 
lexical route because it cannot be used to compute the 
pronunciation of nonwords.  Under these conditions, 
the CDP+ model produced additivity.  The shift from 
overadditive interaction to additivity, tied to the nature 
of the target items, simulated the response time results 
in a naming task reported by O'Malley and Besner 
(2008).  We note, however, that Besner and O'Malley 
(2009) pointed out that although the CDP+ model 
simulated additive effects of stimulus quality and word 
frequency in response time, the model produced an 
interactive effect in error rates.  We agree that this fact 
raises some doubts about this particular model's 
capabilities, but for present purposes our primary 
concern is the principle that a trade-off between a 
thresholded and a non-thresholded process may 
modulate additivity and interaction between factors. 
 A parametric examination of the behavior of the 
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CDP+ model by Ziegler et al. (2009) revealed an 
additional interesting outcome.  If the influence of the 
lexical route was reduced sufficiently, the word 
frequency effect became quite small under conditions 
of low stimulus quality, yielding an underadditive 
interaction between word frequency and stimulus 
quality, as had been observed with the Plaut and Booth 
(2000) model (Besner et al., 2008).  This aspect of the 
model's behavior led Ziegler et al. to propose that 
individual differences between subjects might be 
characterized by varying degrees of reliance on the 
lexical route when naming printed letter strings, and 
that these differences might be manifest in different 
patterns in the joint effects of word frequency and 
stimulus quality.  Thus, some subjects might show 
additivity whereas others could show overadditive and 
perhaps even underadditive interactions.  Aggregating 
across subjects would likely result in an additive 
pattern. 
 

Dynamic Adjustment of Processing 
 
 Although Besner et al. (2008) pointed out that the 
underadditive interaction between word frequency and 
stimulus quality generated by the Plaut and Booth 
(2000) model had not been observed in human data, the 
Ziegler et al. (2009) analysis suggests that an 
interaction of that type may be hidden behind the 
overall mosaic seen when data are aggregated in the 
typical manner.  Indeed, Besner, O'Malley, and 
Robidoux (2010) found an underadditive interaction in 
a naming task when stimulus quality was manipulated 
along with spelling-sound regularity:  exception words 
(e.g., pint) were pronounced more slowly than regular 
words (e.g., hint), and the effect of stimulus quality was 
stronger for regular words.  In dual-route models such 
as CDP+, exception words take longer to read because 
they invite two opposing pronunciations, the correct 
one from the lexical route and an erroneous one from 
the nonlexical route.  Besner et al. (2010) proposed that 
under low stimulus quality, the nonlexical route is less 
active, so its contribution to the computation of a 
pronunciation response is reduced, paving the way for a 
more efficient, correct pronunciation of an exception 
word based on the lexical route.  They suggested that 
the involvement of the nonlexical route might be 
adjusted dynamically as a low-contrast stimulus is 
encountered.  This idea is quite plausible, given earlier 
demonstrations that response time is sensitive to recent 
trial history, such as slowing after commission of an 
error (e.g., Allain, Burle, Hasbroucq, & Vidal, 2009; 
Laming, 1979; Rabbitt, 1966, 1989). 
 Another example of dynamic adjustment of 
processing that can lead to an underadditive interaction 
was reported by Yap, Balota, Tse, and Besner (2008).  
They found the usual additive effect of stimulus quality 
and word frequency in the aggregate data from a lexical 

decision task.  An analysis of response time 
distributions based on Vincentized data from 
experiments in which pseudohomophones (e.g., brane) 
were used as nonword targets, however, revealed a 
more complex pattern.  For this particular case, they 
observed opposing interaction effects, with an 
overadditive interaction occurring when response times 
were relatively short, but for longer response times 
there was an underadditive interaction.  Yap et al. 
suggested that underadditivity may have occurred 
because subjects sometimes engaged in a checking 
operation for low-frequency words, regardless of 
stimulus quality, whereas this operation would be 
applied to high-frequency words only when stimuli 
were low contrast.  Checking would lead to generally 
longer response times, and its differential application in 
the case of high-frequency words would increase the 
influence of stimulus quality on those items. 
 Dynamic processing adjustments may also 
influence the joint effects of stimulus quality and 
semantic priming.  As discussed above, these variables 
have been shown to yield either an overadditive 
interaction or additivity.  One factor that determines the 
nature of these joint effects is the proportion of trials on 
which related primes are used (Stolz & Neely, 1995), 
with an additive pattern emerging when a low 
relatedness proportion is in effect.  Although no 
computational model that implements dynamic changes 
in word processing mechanisms triggered by features of 
the current stimulus has yet emerged, there are recent 
formal models that incorporate sensitivity to events or 
processing fluency experienced on recent trials.  For 
example, Kinoshita, Forster, and Mozer (2008) 
proposed a model (Adaptation to the Statistics of the 
Environment; ASE) to account for sensitivity to the 
proportion of repetition-prime trials in masked priming 
experiments.  The model simulated that sensitivity by 
adapting its response-initiation processes to recent trial 
difficulty.  In particular, evidence about when a 
response should be initiated by the model is derived 
from the current trial as well as from recent trials and 
the results are combined to determine when a response 
is produced.  Given that repetition primes allow for 
faster responding, a high proportion of such trials 
makes it likely that the current trial will have been 
immediately preceded by one or more repetition-prime 
trials.  If the current trial is also a repetition-prime trial, 
then the combined evidence would encourage a short 
latency for initiating a response. 
 The Kinoshita et al. (2008) model leads to the 
prediction that response time on trial N should be 
sensitive to the characteristics of trial N - 1.  Kinoshita, 
Mozer, and Forster (2011) tested this prediction in a 
series of masked priming experiments in which 
repetition and unrelated primes were used.  To provide 
a statistically powerful examination of their data at the 
level of individual trials, Kinoshita et al. (2011) used a 
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linear mixed-model analysis (LMM; e.g., Baayen, 
Davidson, & Bates, 2008; Kliegl, Masson, & Richter, 
2010) and found that as response time on trial N - 1 
increased, so did response time on the current trial. 
 The potential for trial to trial variation in 
processing difficulty to influence the current trial raises 
an important possibility with respect to patterns of 
interaction and additivity seen with word frequency, 
stimulus quality, and priming.  Namely, an empirical 
demonstration of an additive relationship between two 
factors may conceal an underlying pattern of opposing 
interactions that, when aggregated, yield the appearance 
of additivity.  A clear example of this possibility was 
reported by Yap et al. (2008).  As discussed earlier, an 
aggregate additive relationship between word frequency 
and stimulus quality turned out to be composed of a 
combined overadditive and underadditive interaction 
when nonwords were pseudohomophones, with the type 
of interaction dependent on whether response times 
were generally short or long, respectively.  But the 
Kinoshita et al. (2011) results suggest a more fine-
grained possibility:  the combined effects of two factors 
may vary depending on recent trial history (e.g., 
whether processing on the previous trial was difficult or 
easy). 
 From the perspective of the Plaut and Booth (2000) 
connectionist model, one might propose that the amount 
of output activation required for responding varies 
depending on what was experienced on the preceding 
trial.  This variation would position the system at 
different points along the function that relates input 
activation to output activation in semantic processing 
units (Figure 1C).  For example, encountering fluent 
processing on the previous trial might lead to a lower 
threshold for responding on the current trial, thereby 
requiring a lower level of input/output activation.  The 
Plaut and Booth model could produce additivity or 
either type of interaction, depending on where the 
system is positioned on the relevant activation function 
when it reaches a sufficient level of activation for 
responding. 
 Moreover, consideration should be given to how 
subjects adapt to the task of identifying words, 
particularly when stimulus quality is varied.  Under 
these conditions, rapidly discriminating words from 
nonwords in a lexical decision task, for example, may 
depend on stimulus learning that accrues over the 
course of a substantial number of trials.  Turner, Van 
Zandt, and Brown (2011) have proposed a formal 
model of stimulus discrimination (signal vs. noise) in 
which subjects develop signal to noise likelihood ratios 
for various points along a stimulus strength axis.  These 
ratios are modified by recent trial events in the 
following way.  Presentation of a signal stimulus which 
has a particular strength value will increase the 
likelihood that any stimulus with a strength value 
similar to that of the presented stimulus is also in the 

signal category.  This system is essentially a Hebbian 
learning algorithm in which the strength of the 
connection between a value on the signal strength axis 
and a response category (e.g., signal) is increased when 
a signal is presented nearby.  Thus, two closely spaced 
(similar) stimulus values are likely to come to have 
similar signal response strengths and the recent 
presentation of one will strengthen the other. 
 With these possibilities in mind, we used a lexical 
decision task to examine more closely the relationships 
between three factors that have been shown to influence 
word identification processes and that are known to 
have additive or interactive effects:  word frequency, 
stimulus quality, and semantic priming.  Like Kinoshita 
et al. (2011), we used LMMs to evaluate possible 
influences of recent trial history on the nature of these 
relationships.  We anticipated that an additive 
relationship emerging from an analysis of aggregated 
data might mask a more complex relationship that 
varies as a function of the difficulty of the preceding 
trial.  Uncovering layered effects of this nature would 
be an important step in understanding how additive 
effects arise and whether they should be taken as 
evidence of serial processing stages (e.g., Borowsky & 
Besner, 2006) or whether a more elaborate account is 
required. 
 There are additional advantages to using LMM 
instead of the usual analysis of variance (ANOVA) to 
analyze data from word recognition experiments.  First, 
the inclusion of item factors, such as word frequency, 
carries with it the question of whether observed effects 
may be generalized across a broad population of items.  
This question usually is addressed within ANOVA by 
computing two sets of F ratios, one using subjects as 
the random factor and the other using items as the 
random factor (see Raaijmakers, Schrijnemakers, & 
Gremmen, 1999, and Raaijmakers, 2003, for a critique 
of this approach).  A more efficient and justifiable 
method, however, is to model potential random effects 
of both subjects and items simultaneously using LMM 
(e.g., Baayen  et al., 2008). 
 Second, the LMM approach allows us to test for 
the possibility that there are stable individual 
differences between subjects with respect to semantic 
priming effects.  Stolz, Besner, and Carr (2005) 
evaluated the reliability of semantic priming effects 
using split-half and test-retest measures to determine 
whether individual subjects consistently generated large 
or small priming effects.  Their analyses indicated that 
semantic priming effects had low reliability, 
particularly when priming was likely to have only an 
automatic influence on performance (e.g., because a 
short SOA was used).  Stolz et al. concluded that 
automatic semantic priming yields little in the way of 
systematic individual differences.  These measures of 
reliability, however, depend on computing correlations 
between difference scores, which can themselves have 
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rather low reliability.  In our study, by directly 
estimating the variance for between-subject semantic 
priming effects as an LMM parameter, we correct for 
the unreliability of the subject-based difference scores.  
Moreover, if we can establish that there are reliable 
differences between subjects in semantic-priming 
effects, we may also observe significant correlations of 
these effects with differences between subjects in mean 
RT or other experimental effects.  These correlations 
are also estimated as LMM parameters (Kliegl et al., 
2010; Kliegl, Wei, Dambacher, Yan, & Zhou, 2011). 
 Finally, the LMM approach allows a seamless 
integration of a continuous covariate such as trial 
number and its interaction with experimental factors of 
semantic priming, word frequency, and stimulus 
quality.  Such interactions will inform us about how 
subjects’ sensitivity to events or processing fluency 
changes across the experiment. 
 

Experiment 1 
 
 To enhance the possibility of finding additive 
effects of factors in aggregate data, our manipulation of 
semantic priming in a lexical decision task consisted of 
comparing low-associate primes to unrelated primes.  In 
addition, the prime-target SOA was restricted to 200 
ms.  Under these conditions, priming and stimulus 
quality have been shown to have additive effects (Stolz 
& Neely, 1995).  We anticipated that word frequency 
and stimulus quality would produce additive effects 
when aggregate data are considered, as has commonly 
been found (e.g., O'Malley et al., 2007; Yap et al., 
2008).  The potential for semantic priming and word 
frequency to produce an overadditive interaction was 
considered to be high given previous results (e.g., 
Becker, 1979; Borowsky & Besner, 1993), although 
Yap, Tse, and Balota (2009) reported finding additive 
effects for these factors among subjects with relatively 
high vocabulary knowledge. 
 In addition to examining effects in aggregated data, 
we used LMMs to determine whether trial history 
influences the pattern of additivity versus interaction 
that holds between these three independent variables.  
Difficulty of responding on a given trial may be 
influenced by any of these factors, with relatively high 
difficulty arising from low stimulus contrast, low 
frequency, or an unrelated prime.  In testing the 
possibility that the joint effects of these factors on the 
current trial are modulated by difficulty of the previous 
trial, we anticipated that a more complex account of 
additive effects in particular might be required.   
 
Method 
 
 Subjects.  Seventy-two University of Victoria 
students volunteered to participate in the experiment to 
earn extra credit in an undergraduate psychology 

course. 
 Materials.  A list of 240 target words, each item 
comprised of 4 to 7 letters, along with a related prime 
word for each target was constructed by supplementing 
the list of pairs provided by Tse and Neely (2007).  Half 
of the word targets were of relatively high frequency 
(M = 170,438) and the other half were of low frequency 
(M = 16,594), according to frequency norms generated 
by the English Lexicon Project data base (Balota et al., 
2007).  These frequencies are based on a corpus of 
approximately 131 million word tokens (Lund & 
Burgess, 1996).  The mean forward associative strength 
for related prime-target pairs was .226 for high-
frequency targets and .225 for low-frequency targets 
(Nelson, McEvoy, & Schreiber, 2004).  This degree of 
associative strength is similar to the level of associative 
strength for items considered to be low strength by 
Stolz and Neely (1995) who found additive effects of 
priming and stimulus quality with low strength pairs.  A 
list of 240 pronounceable nonwords was constructed 
and served as nonword targets.  They were one or two 
syllables and were of similar letter length to the word 
targets.  None were pseudohomophones, but they 
followed English orthography.  An English word was 
selected to serve as a prime for each of these items.  
These prime words were similar to those used as primes 
for the word targets.  An additional 32 prime-target 
pairs (half word targets and half nonword targets) were 
used as practice items. 
 The list of high- and low-frequency target items 
was broken into four sublists of 30 targets of each 
frequency category.  Within each sublist, a second 
pairing of primes and targets was created to produce 
unrelated prime-target pairs by reassigning primes to 
alternative targets within a sublist.  Assignment of these 
sublists to the four experimental conditions created by 
factorially varying prime relatedness (related vs. 
unrelated) and stimulus quality (clear vs. degraded) was 
counterbalanced across subjects so that each target 
appeared equally often with its related and with its 
unrelated prime in each of the four conditions.  
Nonwords were broken into two sublists and 
assignment of these lists to clear and degraded 
conditions was counterbalanced across subjects.  
 Procedure.  Subjects were tested individually in a 
quiet room, seated at computer monitor that was 
controlled by a Macintosh computer.  They were 
instructed that their task was to classify a series of letter 
strings as words or nonwords.  They were informed that 
on each trial a target letter string would appear in 
uppercase letters, but it would be preceded by a briefly 
presented word in lowercase letters to which no 
response was to be made.  Subjects lightly held the 
forefinger of each hand on a response button mounted 
on a box that was connected to the computer.  A 
response with the right hand indicated that the target 
was a word and a left-hand response was used for 
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nonwords. 
 Each trial began with a fixation cross presented for 
250 ms, followed by a blank screen for 250 ms, then the 
prime word in lowercase letters for 200 ms.  The target 
string was then presented in uppercase and remained in 
view until a response was made.  The next trial 
followed immediately after a correct response.  If an 
incorrect response was made, the message "ERROR" 
was presented on the screen for 1 s.  The fixation cross 
and primes were presented in black font against a white 
background, as were targets that were assigned to the 
clear stimulus-quality condition.  For targets in the 
degraded condition, the black level of the letters was 
reduced to 20% of the maximum darkness possible, 
yielding a light gray, low-contrast image. 
 Subjects were first presented with 32 practice trials 
with equal numbers of word and nonword targets and 
within each item class, equal numbers of items were 
tested in each possible condition.  The practice trials 
were followed by a randomly ordered sequence of 480 
critical trials consisting of 240 word and 240 nonword 
targets.  Subjects were provided evenly spaced breaks 
throughout the course of testing. 
 
Results and Discussion 
 
 We begin by presenting a standard analysis of 
response times and error rates based on ANOVA, 
followed by LMM analyses specifically designed to test 
the possibility that trial history modulates the joint 
effects of word frequency, stimulus quality, and 
priming. 
 Analysis of variance.  Response times for word 
targets less than 200 were classified as spoils and not 
included in the analysis.  Response times longer than 
1,700 ms were excluded as outliers.  This cutoff was 
chosen so that no more than 0.5% of correct responses 
would be excluded (Ulrich & Miller, 1994).  Mean 
correct response time for word targets in each of the 
eight conditions was computed for each subject and the 
means obtained by averaging across subjects are shown 
in Figure 2.  An ANOVA indicated that all three main 
effects were significant Fs(1,71) > 43, ps < .001, with 
shorter response times in the expected cases:  clear 
stimulus quality (64-ms effect), related prime (16-ms 
effect), and high-frequency target (23-ms effect).  None 
of the interactions were significant, Fs < 1. 
 The overall error rate was 3.9%.  An analysis of 
error rates indicated significant main effects 
corresponding to the main effects found in the response 
time data.  In addition, however, there was a significant 
interaction between frequency and priming that did not 
appear in the response time data, F(1, 71) = 7.59, p < 
.01.  The pattern of means indicated a larger benefit of 
related primes for low-frequency targets (2.4% effect) 
than for high-frequency targets (0.7% effect).  Mean 
response times for nonwords was 693 ms in the clear 
condition and 747 ms in the degraded condition, and the  

 
 
Figure 2.  Mean response time in Experiment 1 as a function 
of word frequency, prime, and stimulus quality.  Error bars 
are 95% within-subject confidence intervals appropriate for 
comparing condition means within a particular stimulus 
quality condition (Loftus & Masson, 1994; Masson &  Loftus, 
2003). 
 
mean error rate was 5.0%. 
 The additive joint effects of stimulus quality with 
frequency and with priming were anticipated, given 
prior results, and particularly previous studies that have 
used low-strength 
associates as primes (Stolz & Neely, 1995).  Although 
the overadditive interaction of priming and frequency 
did not appear in response latencies, it was present in 
the error data.  This outcome could reflect a speed-
accuracy trade-off that prevented the interaction from 
emerging in the response time data. 
 Linear mixed-model analysis.  The critical 
question we address with the next analysis is whether 
the additive effects involving stimulus quality that are 
apparent in the aggregate data may be masking 
interactive effects that are modulated by recent trial 
history.  In particular, we examined the influence of 
two characteristics of the immediately preceding trial 
on the current trial:  whether the previous trial required 
a word or nonword response and the stimulus quality of 
the target on the previous trial. 
 (a) Dependent variable.  Estimates of LMM 
variance and covariance parameters critically depend on 
residuals being normally distributed.  Therefore, in a 
reanalysis of masked priming data using LMMs, Kliegl 
et al. (2010) considered a number of methods of 
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transforming raw response time data to produce a 
measure for which model residuals fit a normal 
distribution.  They found that for lexical decision tasks, 
a reciprocal transformation applied to raw response 
time data yielded residuals that much more closely 
approximated a normal distribution than untransformed 
or log-transformed response times.  Kinoshita et al. 
(2011) also found the reciprocal transformation to be 
the most appropriate one for their lexical decision data.  
Consequently, we examined the reciprocal 
transformation for the data reported here and found 
again that it produced residuals with a good 
approximation to a normal distribution.  The analyses 
we report, therefore, are based on a reciprocal 
transformation of the raw data, specifically -1/RT 
(where RT refers to response time measured in seconds) 
so that higher scores will continue to correspond to 
longer response times.  Further, we note that over the 
last few years we have analyzed data from well over 20 
experiments using the lexical decision task.  Without 
exception, the reciprocal transformation yielded 
residuals that were in much better agreement with 
normal distribution assumptions than were raw or log-
transformed response times.1  Note that without the 
multiplication by (-1), reciprocal RT corresponds to a 
perfectly valid metric in physics, namely, speed.  
Perhaps lexical decision effects will prove to be easier 
to interpret in general when conceptualized as 
differences in response speed rather than as differences 
in response time. 
 To examine possible interaction and additive 
effects between priming, word frequency, and stimulus 
quality, the LMM analyses included these three 
manipulated variables as fixed effects, along with the 
main effects of stimulus quality on the previous trial 
and lexical status of the target on the previous trial.  In 
addition to these five main effects, all of the 
interactions (from two-way interactions up to the five-
way) were included. 
 (b) Significance criterion.  We took as the 
criterion for significance of fixed effects a t ratio of 2.0, 
following Kliegl et al. (2010).  In LMM, the degrees of 
freedom for t ratios are not known exactly, although 
with the very large number of observations in data sets 
such as the ones we report here, the t distribution 
converges to the normal distribution.  Therefore, using 
two standard errors as a significance criterion 
corresponds closely to the .05 level of significance.  
Before we turn to details about fixed-effect estimates, 
we  describe  how  we  determined  statistically  reliable 
 
1We repeated the LMM analyses reported below using 
response time instead of the reciprocal transformation and 
found essentially the same results.  This was true for both 
Experiment 1 and Experiment 2.  A few interactions that were 
significant with the reciprocal measure were not significant in 
the response time analysis, probably because of lower 
statistical power due to heterogeneity of residuals. 

variance components and correlation parameters 
associated with them. 
 (c) Variance components and correlation 
parameters (random effects).  Along with fixed 
effects, our LMM allows the estimation of two sets of 
variance components and correlation parameters for the 
random factors of subject and word.  In principle and 
ignoring interactions between fixed effects, the design 
afforded the following parameters for the two random 
factors.  For the subject factor, there were 6 variance 
components (mean RT [intercept] plus 5 within-subject 
effects) and 15 correlation parameters for the possible 
correlations between each pair of these 6 components.  
For the random factor word, there were 5 variance 
components (mean RT [intercept] plus 4 within-word 
effects; frequency is a between-word effect) and 10 
correlation parameters for correlations between these 
components.  Counting also the residual variance, the 
model parameters added up to a maximum of 37 
variance components and correlation parameters.  
These are simply too many parameters given our data, 
so we proceeded in two steps to determine significant 
parameters.  In the first step, we determined the 
significant variance components by deleting in turn 
each variance component from a model containing all 
variance components and checking for a significant 
decrement in goodness of fit using likelihood ratio tests, 
the Akaike Information Criterion, and the Bayesian 
Information Criterion.  Models with successively fewer 
variance components were tested until it was 
determined that dropping a particular variance 
component produced a significantly worse fit to the 
data (see Baayen et al., 2008, and Quené & van den 
Bergh, 2008, for detailed examples of how this 
procedure is applied to LMMs). 
 (d) LMM results for variance components and 
correlation parameters.  The final model included 
variance components for the mean speeds for item and 
subjects (i.e., the intercepts), a variance component for 
the priming effect for items (indicating that priming 
was differentially successful across items), and variance 
components for the effects of stimulus quality on the 
current trial and lexical status of the target on the 
previous trial for subjects.  In addition, the final model 
included a correlation parameter for the random effects 
of stimulus quality and of intercept for subjects.  This 
correlation was -.41, indicating that subjects who 
responded faster generally showed larger effects of 
stimulus quality.  This somewhat counterintuitive 
outcome probably reflects greater reliability in the 
measurement of stimulus quality effects for subjects 
who respond faster (and probably with less variability).  
These random effects are summarized in the upper 
section of Table 1. 
 Note that the set of random components retained in 
the best fitting LMM does not include a component for 
variation  between  subjects with respect to the effect of 
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Table 1 
Linear Mixed Model Estimates of Coefficients, 
Standard Errors, and t Ratios for Fixed Effects, and 
Variances, Standard Deviations, and Correlation for 
Random Effects  in Experiment 1 
–––––––––––––––––––––––––––––––––––––––––––– 
Random effects Variance St. dev. r 
–––––––––––––––––––––––––––––––––––––––––––– 
Items 
 Intercept 0.0044 0.0664 
 Prime 0.0020 0.0451 
Subjects 
 Intercept 0.0261 0.1617 
 Stimulus quality 0.0042 0.0650 -0.409* 
 Last-Trial Target 0.0019 0.0435 
–––––––––––––––––––––––––––––––––––––––––––– 
Fixed effects Coefficient St. error t 
–––––––––––––––––––––––––––––––––––––––––––– 
Intercept -1.6376 0.0197 -83.29 
Frequency (F) 0.0546 0.0097 5.64 
Prime (P) 0.0384 0.0054 7.17 
Stimulus quality (Q) 0.1647 0.0089 18.54 
Last-trial stimulus 
  quality (LQ) 0.0023 0.0045 0.50 
Last-trial target (LT) 0.0250 0.0069 3.64 
F x P -0.0033 0.0107 -0.31 
F x Q -0.0131 0.0090 -1.46 
P x Q 0.0050 0.0090 0.55 
F x P x Q -0.0053 0.0180 -0.29 
F x LQ 0.0012 0.0091 0.13 
F x LT 0.0118 0.0091 1.30 
P x LQ -0.0146 0.0091 -1.60 
P x LT -0.0037 0.0091 -0.40 
Q x LQ -0.0344 0.0091 -3.78 
Q x LT 0.0085 0.0091 0.94 
LT x LQ 0.0141 0.0091 1.55 
F x P x LQ 0.0446 0.0182 2.45 
F x P x LT -0.0032 0.0182 -0.18 
F x Q x LQ 0.0433 0.0182 2.38 
F x Q x LT 0.0010 0.0182 0.06 
P x Q x LQ 0.0195 0.0182 1.07 
P x Q x LT -0.0246 0.0182 -1.35 
F x LQ x LT -0.0137 0.0182 -0.75 
P x LQ x LT -0.0113 0.0182 -0.62 
Q x LQ x LT 0.0924 0.0182 5.08 
F x P x Q x LQ -0.0076 0.0364 -0.21 
F x P x Q x LT 0.0094 0.0364 0.26 
F x P x LQ x LT  0.1089 0.0364 2.99 
F x Q x LQ x LT 0.0059 0.0365 0.16 
P x Q x LQ x LT 0.0405 0.0364 1.11 
F x P x Q x LQ x LT 0.0598 0.0729 0.82 
–––––––––––––––––––––––––––––––––––––––––––– 
*Correlation between intercept and stimulus quality. 
 
semantic priming, even though there were components 
for variation between subjects in the effects of stimulus 
quality on the current trial and lexical status of the 

previous trial's target.  The lack of evidence for a 
random effect of priming among subjects, suggesting 
low reliability in our measurement of priming 
variability between subjects, is consistent with the 
finding of Stolz et al. (2005) that semantic priming 
effects have very low reliability.  If there were stable, 
meaningful variationbetween subjects with respect to 
the magnitude of semantic priming, then the fit of the 
LMM should have been improved by including a 
random subjects effect for priming. 
 (e) LMM results for fixed-effects.  The estimated 
coefficients for the fixed effects of the final model are 
shown in the lower part of Table 1.  The fixed effects of 
the three factors, priming, frequency, and stimulus 
quality, were significant and we observed the same 
pattern of additivity among those factors as was seen in 
the ANOVA.  In addition, however, the lexical status of 
the target on the previous trial influenced response time 
as a main effect:  there was slower responding if the 
previous target was a nonword.  Moreover, both lexical 
status and stimulus quality of the previous trial's target 
entered into interactions with the three primary factors.2 
 For example, the effect of current stimulus quality 
was modulated by both the prior target's lexical status 
and its stimulus quality, as indicated by the interaction 
between prior and current stimulus quality and the 
three-way interaction between these two factors and 
lexical status of the prior target.  The three-way 
interaction is plotted in Figure 3.  The plot shows that 
responding was faster if the stimulus quality on the 
previous and current trials was the same rather than 
different, but this effect held only when the previous 
target was a word.  The difficult processing 
encountered when the previous target was degraded did 
not generally slow response time on the current trial, as 
might be expected from the Kinoshita et al. (2008) ASE 
model, but instead its influence depended on the quality 
of the current trial's target.  This result is consistent 
with the implications of the Turner et al. (2011) 
proposal regarding how stimulus representations are 
learned and are influenced by recent trial history.  Two 
degraded word targets can be considered relatively 
close on the stimulus strength axis (as compared, for 
example, to a degraded word target and a degraded 
nonword target), and a signal (word) response to one of 
these two word targets may be expected on the Turner 
et al. account to elevate the signal response strength of 
other nearby targets, leading to a faster response. 
 
 
2The occurrence of a response error on a trial immediately 
preceding one of the critical trials might introduce some 
extraneous influence on our measure of the effects of trial 
history.  To test this possibility, we repeated the LMM 
analyses for both Experiment 1 and Experiment 2, omitting 
critical trials that were preceded by an error.  The results in 
both cases were consistent with those we report for data that 
were not filtered for an error on trial N - 1. 
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Figure 3.  Mean transformed response time in Experiment 1 
as a function of stimulus quality of the target, and stimulus 
quality and lexical status of the target on the previous trial.  
Error bars are estimated 95% within-subject confidence 
intervals appropriate for comparing condition means. 

 
 More importantly, apparent additive effects 
involving frequency and the other two primary factors 
dissolved into interactive relationships when data were 
conditionalized on features of the previous trial's target.  
Additivity between frequency and priming turned out to 
be composed of two, opposite going interactions that 
depended on the quality of the previous target.  This 
dependency was revealed by an interaction between 
these two factors and quality of the previous target, and 
by a four-way interaction that included lexical status of 
the previous target.  The pattern of this four-way 
interaction is shown in Figure 4.  Although priming and 
frequency were additive when the previous target was a 
word, interactions emerged when it was a nonword.  
Specifically, a typical overadditive interaction between 
priming and frequency occurred when the previous 
nonword target was degraded (bottom-right panel), but 
an underadditive interaction was seen when the 
previous nonword target was clear (top-right panel).  A 
re-parameterization of the LMM with frequency and 
priming nested within the four cells defined by the 
stimulus quality and lexical status of the target on the 
previous trial showed that both of these two-way 
interactions were significant (ts > 2.3).  There was no 
significant interaction when the previous target was a 
word (ts < 1).  Combining the data across all trials, 
ignoring trial history, led to a pseudo-additive pattern in 
the aggregate.  The overadditive component of this 
interaction (seen only when the previous target was a 
degraded nonword) is consistent with past literature 
(e.g., Becker, 1979; Borowsky & Besner, 1993), but the 
underadditive outcome is quite surprising.  
 Although we anticipated the possibility that 
opposite going interactions might underlie an additive 
effect, there is little or no theoretical guidance for 
predicting what form these interactions might take.  A 
speculative possibility is that the process in the Plaut 
and Booth (2000) model that relates input and output 
activation (see Figure 1C) may be sensitive to recent 

trial events.  For example, a particularly difficult 
stimulus, such as a degraded nonword, may lead to a 
increase in the amount of evidence required to produce 
a response on the next trial.  This is one of the 
principles incorporated into the ASE model of dynamic 
changes in response times (Kinoshita et al., 2011).  
Requiring more evidence (i.e., a higher level of output 
activation for a response) would move the criterion for 
responding further up the sigmoid function in Figure 
1C, into a region that would produce an overadditive 
interaction, as depicted in the figure.  A less demanding 
experience on trial N - 1 might allow the output 
activation threshold to be lowered, moving the criterion 
back down the sigmoid function.  Shifting to a 
sufficiently low level would create the potential for an 
underadditive interaction, which was observed when 
the target on the preceding trial was a clear nonword.  
Although this scenario fits with the case where the 
previous target was a nonword, no such dynamic 
process was evidence when the target on trial N - 1 was 
a word.  We consider below the question of why lexical 
status of the previous target might modulate these 
dynamics. 
 The additive relationship between frequency and 
stimulus quality, a result that is central to the debate 
about the ability of computational models to capture 
additive  effects  (e.g., Borowsky & Besner, 2006; Plaut 
 

 
 

Figure 4.  Mean transformed response time in Experiment 1 
as a function of frequency and prime condition for the current 
target, and stimulus quality and lexical status of the target on 
the previous trial.  Error bars are estimated 95% within-
subject confidence intervals appropriate for comparing 
condition means. 
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Figure 5.  Mean transformed response time in Experiment 1 
as a function of frequency and stimulus quality for the current 
target, and stimulus quality of the target on the previous trial.  
Error bars are estimated 95% within-subject confidence 
intervals appropriate for comparing condition means. 
 
& Booth, 2006), turned out to be the product of 
aggregating two, opposite-going interaction effects, as 
indicated by the three-way interaction between 
frequency, stimulus quality, and stimulus quality of the 
previous target.  This interaction is shown in Figure 5, 
and comprises a significant underadditive interaction 
when the previous target was clear (left panel; t = 2.71) 
and a non-significant, but numerically overadditive 
interaction between frequency and stimulus quality 
when the target on the previous trial was degraded 
(right panel; t = 0.67), as indicated by a re-
parameterization of the LMM with frequency and 
stimulus quality nested within levels of last-trial 
stimulus quality. 
 The underadditive interaction between frequency 
and stimulus quality obtained when the previous trial's 
target was clear (left panel of Figure 5), combined with 
the underadditive interaction between frequency and 
stimulus quality reported by Yap et al. (2008), raises 
the distinct possibility that the underadditivity produced 
in some simulations with the Plaut and Booth (2000) 
model (e.g., Besner et al., 2008) might be a valid 
reflection of behavior.  As with the combination of 
over- and underadditivity seen with frequency and 
priming, the modulation of the frequency by stimulus 
quality interaction could, in principle, be captured in a 
model like the Plaut and Booth connectionist model.  
With a difficult (degraded) target on the previous trial, 
the response threshold might be elevated, requiring 
stronger output for a response.  This setting would 
move the system to a higher point on the sigmoid 
function shown in Figure 1C, near a region in which 
overadditivity is seen.  When the prior target was less 
demanding (clear), the threshold might be reduced, 
bringing the system into the region of the activation 
function that yields underadditivity. 
 (f) Including Trial as a covariate in the LMM.  
The results described in the previous section clearly 

document that characteristics of the previous trial (i.e., 
the lexical status and the stimulus quality of the last 
target) exert strong effects on response speed in the 
current trial.  According to Turner et al. (2011), subjects 
may develop stimulus representations over time and 
this learning increases the ability to discriminate 
between stimulus classes–words and nonwords.  We 
investigated the possibility that these effects would 
change across trials in the experiment.  In a second 
LMM, we added trial number (centered, so that the 
middle trial was coded as zero) and its interactions as a 
sixth factor to the primary model described above to 
assess condition-specific change in response time over 
the course of the entire experiment.  This analysis 
indicated that trial number interacted with lexical status 
of the target on the previous trial.  Response time to 
word targets did decrease over trials, but only if the 
previous trial's target was a word (see Figure 6).  The t 
ratio for the effect of trial number when the previous 
trial had a word target was substantial, t = -6.26, 
whereas the effect was clearly not significant when the 
immediately preceding target was a nonword, t < 1.  
None of the other interactions with trial were 
significant.  These data indicate that the tendency to 
respond more efficiently to word targets as subjects 
gained more experience with the task and with the 
nature of the stimuli was strongly modulated by recent 
trial history. 
 The sensitivity of improvement across trials to the 
lexical status of the previous trial's target offers 
possible insight into the four-way interaction involving 
frequency and priming shown in Figure 4.  That 
interaction revealed that the relationship between 
frequency and priming was modulated by the stimulus 
quality of the previous target,  but only if that target was 
 

 
 

Figure 6.  Mean transformed response time in Experiment 1 
as a function of trial number and lexical status of the target on 
the previous trial.  Continuous error bars (shown as gray 
bands around trend lines) are 95% within-subject confidence 
intervals appropriate for comparing condition means. 
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a nonword.  This finding, combined with the trial 
effects shown in Figure 6, suggests that the application 
of dynamic adjustments to the word recognition system, 
such as altering response thresholds, may be modulated 
by ongoing events.  In particular, with consecutive 
presentation of word targets, the system appears to 
become increasingly efficient.  In contrast, when a 
nonword target appears, the efficiency gains evident 
following a word target appear to be lost, a 
phenomenon that we suggest is comparable to the 
increased caution that contributes to post-error slowing 
(e.g., Allain et al. 2009; Dutilh et al., 2012; Rabbitt, 
1966, 1989).  We suggest that the presentation of a 
nonword target may interrupt the relatively smooth 
processing that develops when consecutive word targets 
are experienced, and that adjustments to decision 
processes are made to reduce the possibility of an error.  
A similar principle is used to guide response initiation 
processes in the ASE model (Kinoshita et al., 2008, 
2011). 
 

Experiment 2 
 
 In Experiment 1, we found that recent trial history, 
embodied by the characteristics of the target on the 
immediately preceding trial, altered something as 
fundamental as the improvement in performance across 
trials.  Moreover, the stimulus quality of the previous 
trial's target modulated the relationship between 
frequency and the other two primary factors, priming 
and stimulus quality.  Such a complex constellation of 
results requires a follow-up to assess its reliability and 
generalizability.  Therefore, in Experiment 2, we 
investigated the question of whether this modulation 
was the result of an ineluctable characteristic of the 
word processing architecture, or instead was the 
product of dynamic adaptation to varying trial 
difficulty, in line with models such as the ASE 
(Kinoshita et al., 2008, 2011) or the Turner et al. (2011) 
account of learning stimulus representations.  Rather 
than randomly mixing clear and degraded targets, 
subjects in Experiment 2 experienced these two types of 
display in separate blocks of trials.  With this 
arrangement, subjects would not be exposed to trial by 
trial variation in processing difficulty arising from 
stimulus degradation, although there would still be 
potential variation due to lexical status of the target on 
the previous trial.  Finally, we also aimed to 
demonstrate reliable individual differences in semantic 
priming effects, given a task context without random 
trial by trial fluctuation in stimulus quality. 
 
Method 
 
 Subjects.  Seventy-two new subjects drawn from 
the same source as in Experiment 1 participated in the 
experiment. 
 Materials and procedure.  The same materials 

and procedure were used as in Experiment 1, except 
that clear and degraded targets were presented in two 
separate blocks, each consisting of 16 practice trials and 
240 critical trials.  The order of presentation of the two 
blocks was counterbalanced across subjects. 
 
Results and Discussion 
 
 Analysis of variance.  Response times were 
filtered as in Experiment 1, with the upper bound set at 
1,600 ms so as to exclude no more than 0.5% of the 
correct responses as outliers.  Mean correct response 
times are shown in Figure 7.  An ANOVA with 
frequency, prime condition, and stimulus quality as 
repeated measures factors indicated that all three main 
effects were significant, Fs(1, 71) > 35, ps < .001.  In 
addition, there was an overadditive interaction between 
frequency and prime, indicating larger priming for low-
frequency targets, F(1, 71) = 7.10, p < .01.  None of the 
remaining interactions were significant.  Although the 
pattern of means in Figure 7 suggests that the frequency 
x prime interaction was restricted to degraded targets, 
implying a three-way interaction, that interaction was 
not significant, F(1, 71) = 2.08, p > .15. 
 The overall error rate was 3.1%.  An ANOVA 
applied to these data found significant main effects of 
frequency and prime, Fs(1, 71) > 13, ps < .01, but the  
 

 
 

Figure 7.  Mean response time in Experiment 2 as a function 
of word frequency, prime, and stimulus quality.  Error bars 
are 95% within-subject confidence intervals appropriate for 
comparing condition means within a particular stimulus 
quality condition. 
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stimulus quality effect was not significant, F(1, 71) 
=3.02, p = .09.  There was one significant interaction 
which was an underadditive pattern involving prime 
and stimulus quality, whereby the priming effect was 
larger for clear targets (1.5% vs. 0.5%), F(1, 71) = 5.72, 
p < .05.  Mean response time for nonword targets was 
672 ms for the clear condition and 718 ms for the 
degraded condition and the overall error rate was 4.3%. 
 In summary, the response time data replicated the 
typical interaction between frequency and prime.  Even 
though there was an additive relationship between 
prime and stimulus quality in response times, the error 
data present a complication in the form of an 
underadditive interaction between these two factors.  
The interaction could reflect a ceiling that subjects 
placed on their willingness to make response errors, so 
that the error rate in the most susceptible condition 
(unrelated prime/degraded target) did not reach what 
otherwise might have been its full extent.  This 
suggestion is similar to one of the accounts of the 
underadditive interaction between frequency and 
stimulus quality that Yap et al. (2008) offered for their 
finding with response time data.  But if this were so, 
then it implies that going beyond the imposed error rate 
ceiling would be associated with faster responding in 
the unrelated/degraded condition.  That change would, 
in turn, potentially generate an underadditive 
interaction in the response time measure.  The 
interpretation of the prime by stimulus quality 
interaction in error rates, then, is unclear.  Given that 
the error rates were very low overall, with many cells 
(43%) having zero errors, the interaction may be a type 
I error. 
 Linear mixed-model analysis.  The LMM 
analysis was applied to response data after they were 
converted using the reciprocal transformation (-1/RT), 
as in Experiment 1.  Stimulus quality of the previous 
trial's target was not included as a factor in this analysis 
because that factor was a blocked manipulation and 
stimulus quality did not vary from trial to trial within a 
block.  All of the other fixed effects and interactions 
included in the LMM analysis reported in Experiment 1 
were included in the present analysis.  Using the same 
method as in Experiment 1, we determined which 
variance components warranted inclusion in the final 
model, based on adequacy of the fit to the data. 
 (a) LMM results for variance components and 
correlation parameters.  In the final model, the 
retained variance components were the item and subject 
intercepts, the effect of prime for items, and the effects 
of stimulus quality and lexical status of the target on the 
previous trial for subjects.  All of these random effects 
were also included in the optimal model for Experiment 
1.  In addition, the model for Experiment 2 included 
random effects of frequency and prime for subjects, as 
well as a parameter for the correlation between prime 
and intercept for subjects.  Details of the random effects 

Table 2 
Linear Mixed Model Estimates of Coefficients, 
Standard Errors, and t Ratios for Fixed Effects, and 
Variances, Standard Deviations, and Correlation for 
Random Effects in  Experiment 2 
–––––––––––––––––––––––––––––––––––––––––––– 
Random effects Variance St. dev. r 
–––––––––––––––––––––––––––––––––––––––––––– 
Items 
 Intercept 0.0042 0.0651 
 Prime 0.0014 0.0371 
Subjects 
 Intercept 0.0262 0.1617 
 Frequency 0.0011 0.0328 
 Prime 0.0008 0.0280 -0.507* 
 Stimulus quality 0.0073 0.0853 
 Last-Trial Target 0.0038 0.0619 
–––––––––––––––––––––––––––––––––––––––––––– 
Fixed effect Coefficient St. error t 
–––––––––––––––––––––––––––––––––––––––––––– 
Intercept -1.7011 0.0194 -86.60 
Frequency (F) 0.0422 0.0103 4.12 
Prime (P) 0.0445 0.0060 7.41 
Stimulus quality (Q) 0.1375 0.0110 12.54 
Last-Trial Target (LT) 0.0531 0.0085 6.22 
F x P 0.0204 0.0100 2.04 
F x Q -0.0122 0.0088 -1.39 
P x Q 0.0019 0.0088 0.21 
F x P x Q 0.0166 0.0176 0.95 
F x LT -0.0008 0.0089 -0.09 
P x LT -0.0014 0.0089 -0.15 
Q x LT 0.0013 0.0089 0.15 
F x P x LT -0.0148 0.0178 -0.83 
F x Q x LT -0.0183 0.0178 -1.03 
P x Q x LT -0.0230 0.0178 -1.30 
F x P x Q x LT -0.0770 0.0355 -2.17 
–––––––––––––––––––––––––––––––––––––––––––– 
*Correlation between intercept and prime. 
 
are shown in the upper section of Table 2.  The estimate 
of the correlation parameter (-.51) indicates that the 
effect of priming was larger for subjects who responded 
faster.  As with the correlation between stimulus quality 
and response speed in Experiment 1, we suggest that 
the reliability of the data is greater for faster subjects. 
 Although the variance component for the random 
effect of priming for subjects was quite small (indeed it 
was the smallest random effect obtained in either 
experiment), it significantly improved the fit of the 
LMM.  These results indicate that with a sufficiently 
sensitive measure of individual differences, evidence 
can be obtained for stable sources of variation in the 
magnitude of semantic priming.  We note that with a 
prime-target SOA of 200 ms and a prime relatedness 
proportion of .5 (as was used here), Stolz et al. (2005) 
found a low, but significant split-half reliability 
estimate for semantic priming.   In addition,  the signifi- 
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Figure 8.  Mean transformed response time in Experiment 2 
as a function of frequency, prime condition, and stimulus 
quality for the current target, and lexical status of the target on 
the previous trial.  Error bars are estimated 95% within-
subject confidence intervals appropriate for comparing 
condition means. 
 
cant  correlation  we  obtained  between   priming effect 
size and overall speed of responding indicates that there 
is sufficient reliability in measures of semantic priming 
to establish relationships with other variables.  This 
finding, in turn, encourages further examination of 
possible mechanisms underlying individual differences 
in semantic priming. 
 (b) LMM results for fixed-effects.  The estimated 
coefficients for the fixed effects of the optimal model in 
Experiment 2 are shown in lower section of Table 2.  
The t ratios shown in the table indicate that along with 
the significant main effects of all three primary factors 
and the effect of the previous target's lexical status, 
there was an interaction between frequency and prime, 
matching the overadditive interaction seen in the 
ANOVA and in Figure 7 reported earlier.  In addition, 
however, the four-way interaction was significant.  The 
pattern of means in this interaction is shown in Figure 8 
where the means are plotted to highlight the potential 
interaction patterns between frequency and stimulus 
quality.  The existence of a four-way interaction implies 
that these two factors are not consistently additive, 
contrary to what is suggested by the analysis of 
aggregated data reported above. 
 Indeed, it can be seen in Figure 8 that there are two 

contexts (word target on previous trial, related prime on 
current trial; nonword target on previous trial, unrelated 
prime on current trial) where there appears to be an 
underadditive interaction between word frequency and 
stimulus quality.  Combining these two contexts to 
examine that interaction yielded a significant effect, t = 
-2.51.  For the other two contexts, no significant 
interaction between word frequency and stimulus 
quality was obtained, neither when the contexts were 
considered separately nor when combined.  The weak 
tendency toward an overadditive interaction when the 
prior target was a word and the current trial’s prime was 
unrelated (t = 1.38) appears to have helped to prevent 
an overall frequency by stimulus quality interaction 
from emerging. 
 The underadditive interactions that appear in two 
of the panels of Figure 8 occurred under circumstances 
that represent particularly fast and particularly slow 
responding.  This pattern is difficult to explain, even 
with a flexible framework such as the Plaut and Booth 
(2000) model.  For the case in which the current target 
has a related prime and the previous target was a word, 
which is where the fastest responses were made, one 
could imagine that the required level of output 
activation for a response might be relatively low, which 
means the system is operating in a region of the input-
output activation function that is amenable to an 
underadditive interaction.  But the other circumstance 
in which underadditivity was found, prior nonword 
target and unrelated prime, is associated with slow 
responses.  That feature suggests that relatively more 
evidence is required for responding, which would 
presumably move the system further along the input-
output activation function, out of the region where an 
underadditive interaction would be expected.  We have 
no compelling explanation for this somewhat 
anomalous outcome, but one possibility is that it is the 
product of a ceiling effect on response time in the 
slowest condition (low frequency, degraded target).  As 
can be seen in Figure 8, response times were longer in 
this condition than in any other. 
 (c) Including Trial as a covariate in the LMM.  
As was done in Experiment 1, we examined the change 
in response time across trials by including trial number 
as a covariate along with its interactions with the other 
independent variables.  Trial number ran from the first 
trial of the first block (clear targets for half of the 
subjects, degraded targets for the other half) to the last 
trial of the second block.  As in Experiment 1, the 
lexical status of the target on the previous trial strongly 
modulated the improvement in response time across 
trials.  This result is illustrated in  Figure 9.  Note that 
although response time decreased over trials when the 
previous target was a word, t = -2.07, the opposite trend 
held when the previous target was a nonword, t = 2.07.  
This analysis was repeated with stimulus quality of the 
current target as a factor,  and trials  running  only  from 
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Figure 9.  Mean transformed response time in Experiment 2 
as a function of trial number and lexical status of the target on 
the previous trial.  Continuous error bars (shown as gray 
bands around trend lines) are 95% within-subject confidence 
intervals appropriate for comparing condition means. 

 
the first to the last  trial  within  a  block  (i.e., 1 to 240), 
given that stimulus quality was a blocked factor in this 
experiment.  The same pattern of change across trials 
was seen for both levels of stimulus quality, with no 
interaction between stimulus quality, trial, and lexical 
status of the previous target.  The improvement seen 
when the previous target was a word is consistent with 
the results of Experiment 1, but the slowing over trials 
when the earlier target was a nonword is novel and 
surprising.  It suggests that even though an error is not 
committed, responding positively to a word target may 
be done with elevated caution because of the 
heightened sensitivity to the possibility of an error 
occasioned by handling a nonword target.  Given that 
this result did not appear in Experiment 1, however, it 
would be prudent to wait for replications of this result 
before drawing strong conclusions as to its meaning. 
 

General Discussion 
 
 The primary result obtained in the two experiments 
reported here is the contrast between apparently 
additive effects obtained in aggregated data and the 
underlying interactions (both over- and underadditive) 
between these same effects when the data were 
examined with respect to recent trial history.  In both 
Experiments 1 and 2, aggregate data indicated that the 
effects of word frequency and stimulus quality were 
additive, in keeping with previous findings (e.g., 
Becker & Killion, 1977; Stanners, Jastrzembski, & 
Westbrook, 1975; Yap & Balota, 2007).  But the LMM 
analyses revealed that in both cases, these additive 
patterns were generated by underlying interactive 
effects that were modulated by recent trial history.  

Variations in the pattern of interaction between word 
frequency and both semantic priming and stimulus 
quality were demonstrated. 
 We have suggested that these modulations 
potentially can be captured in a model such as the Plaut 
and Booth (2000) connectionist model of word 
recognition by assuming that experience on a particular 
trial can influence the evidence threshold required for 
responding on the next trial, similar to what is assumed 
in the ASE model of dynamic adjustment of response 
initiation (Kinoshita et al., 2008, 2011).  Changes in 
threshold correspond to changes in degree of output 
activation needed for responding.  As shown in Figure 
1C, the sigmoid function relating input to output 
activation can generate additive, overadditive, or 
underadditive relationships between factors, depending 
on the region of the activation function that maps onto 
the current level of required evidence (output 
activation).  According to the Besner et al. (2008) 
simulation results using the Plaut and Booth (2000) 
model, an underadditive interaction between frequency 
and stimulus quality was obtained when a relatively 
weak manipulation of quality was applied, but 
additivity and then an overadditive interaction were 
obtained in that simulation as the manipulation was 
amplified.  In our experiments, however, the strength of 
the stimulus quality manipulation was constant and 
therefore cannot be mapped onto the conditions under 
which we obtained additivity and interactions.  It was 
not the nature of the manipulation of stimulus quality 
that modulated the relationships between factors that 
we observed, but instead recent trial history.  One of the 
challenges, then, in adapting a model such as that of 
Plaut and Booth (2000) to accommodate results like 
those reported here is to develop a principled account of 
dynamic responses to recent trial events and of how the 
application of cognitive control over these responses is 
regulated (e.g., Botvinick, Braver, Barch, Carter, & 
Cohen, 2001). 
 Another challenge is to determine how a 
computational model might accommodate the degree of 
processing flexibility implied by the dynamic changes 
in relationships between variables seen in our 
experiments.  For example, the four-way interaction 
depicted in Figure 4 shows all three possible 
relationships between word frequency and semantic 
priming (additivity, overadditivity, and 
underadditivity).  Although the sigmoid function shown 
in Figure 1C can generate all three patterns, there is a 
problem.  Namely, the two types of trial history that 
produced the two interaction effects in Figure 4 both 
involve relatively long response times.  The conditions 
yielding additivity have shorter response times.  On a 
simple interpretation of  the input-output activation 
function in Figure 1C, the average response time in the 
conditions that produce additivity should lie between 
the   response  times   for  the  over-  and  underadditive 
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Figure 10.  Schematic representation of an adjustable input-
output activation function.  The variant on the left is invoked 
when the previous trial's target was a word and the version on 
the right is invoked when the previous target was a nonword.  
In the latter case, more input activation (and time) is required 
to achieve a particular amount of output activation relative to 
the version of the function on the left.  Additive effects (e.g., 
of frequency and priming) can be generated by the left 
function under response times that are shorter (an input values 
that are lower) than those for the right function when it 
generates under- and over-additive effects. 
 
conditions.  Clearly, this is not what we found.  Another 
component would have to be added to the model to 
accommodate the set of results seen in Figure 4.  As 
one example, we suggest that the input-ouput activation 
function may itself be dynamic, such that the slope of 
the function might become more shallow in cases where 
caution is warranted or processing is more challenging.  
This notion is depicted in Figure 10, which embodies 
the assumption of a slower-rising activation function 
when the previous trial presented a nonword target.  On 
those trials, more input strength is required to produce a 
response (presumably increasing overall response time).  
As shown in the figure, this modification creates a 
system in which what is experienced on the previous 
trial can lead to different interaction patterns. 
 
Trial-to-Trial Influences on Practice Effects 
 
 A particularly striking feature of our results is the 
demonstration that something as fundamental as 
improvement with practice across trials is strongly 
modulated by differences between successive trials.  In 
both experiments, we found that improvements in 
speeded lexical decisions to word targets were seen 
only when the previous trial's target was also a word.  
When the previous target was a nonword, either no 
improvement (Exp. 1) or even an elevation in response 
time (Exp. 2) was seen as the experiment progressed.  
These findings raise interesting questions about the 
mechanisms underlying skill learning and models of 
those processes.  Improvement with practice generally 

follows a power law, with the logarithm of response 
time decreasing as a linear function of the logarithm of 
practice trial number (A. Newell & Rosenbloom, 1981). 
 Our results indicate that this lawful relationship 
may not hold and might even be reversed, depending on 
what occurred on the previous trial.  It would be of 
substantial interest to determine which components of 
skill acquisition underlie such contingencies.  
Moreover, Logan (1988) developed a detailed 
mathematical model of instance-specific learning that 
he applied to the lexical decision task.  The model 
provided an account of the power function speed-up 
when responding to repeatedly presented items by 
assuming that subjects relied on memory for prior 
instances involving those items.  Both word and 
nonword items showed these systematic effects, but our 
findings raise the possibility that item-specific learning 
functions may be modulated by the nature of the 
previous trial's target.  If so, then models of memory-
based skill acquisition (e.g., Logan, 1988; Rickard, 
2004) would have to be revised. 
 
Implications for Processing Architecture 
 
 At present, we lack explanatory frameworks 
powerful enough to generate a priori expectations about 
how trial history should influence interactive effects of 
manipulations such as frequency, stimulus quality, and 
priming.  The current approach to explaining patterns of 
additivity and interaction has been dominated by 
attempts to choose between different architectural 
assumptions about processing modules.  For example, 
in the Plaut and Booth (2000, 2006) connectionist 
model, changes in interaction patterns can be attributed 
to variation in activation levels along the sigmoid 
function relating input to output of processing units.  In 
the additive factors approach championed by Besner 
and colleagues (e.g., Besner et al., 2008, 2010; Yap et 
al., 2008), flexibility in the application of a thresholding 
or normalization mechanism when processing degraded 
input accounts for observed relationships between 
factors that may or may not be additive. 
 It is unclear, however, whether dynamic 
adjustments to processing architecture will be the most 
fruitful approach to explaining the modulation of 
additivity and interaction between factors.  Indeed, 
serious questions have been raised about whether we 
can empirically distinguish between predictions of 
discrete stage models and continuous processing 
models (McClelland, 1979; Stafford & Gurney, 2011; 
Thomas, 2006).  An alternative direction endorsed by 
the present results is grounded in an examination of the 
influence of trial history on processing dynamics.  
Models like the ASE (Kinohsita et al., 2008, 2011), that 
provide coherent accounts of how recent trial events 
can influence decisional processes, may turn out to be 
especially useful.  In approaches such as these, the 
critical issue is not dynamic changes in architectural 
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operation, but instead modulation of response initiation 
processes.  In the ASE, recent trial history provides an 
estimate of how rapidly information about a stimulus 
can be assumed to accumulate and therefore about 
approximately when it would be safe to make a speeded 
response without too much risk of an error.  In this 
model, there are conditions under which easy items are 
more sensitive to trial history than are hard items (the 
opposite relationship is not predicted by the model).  
The underadditive interaction between frequency and 
stimulus quality in Experiment 1, resting as it does on 
modulation of high-frequency word targets in 
particular, may reflect this differential sensitivity. 
 A related approach to accounting for patterns of 
additivity and interaction emphasizes the nature of 
stimulus representations that enter into decision 
processes.  As we have discussed, Turner et al. (2011) 
have proposed that changes in task performance across 
trials, including the influence of recent trial history, are 
determined in part by the development of stimulus 
representations.  We suggest that differential learning 
about stimuli, potentially as a function of any of the 
three major factors considered here, can contribute to 
the nature of the relationship observed between those 
factors without appeal to any modulation of processing 
architecture.  Although the Turner et al. model has been 
developed to account for performance accuracy, not 
response time, they point out that other models exist 
that account for how response latency is affected by 
stimulus representations that change over time (e.g., 
Lee & Dry, 2006; B. R. Newell & Lee, 2011). 
 A specific example of how finding additivity or 
interaction in response time data may depend on the 
way in which stimuli are coded was demonstrated in 
modeling work reported by Stafford and Gurney 
(2011).  They simulated the influence of color 
saturation on the congruency effect in single-stage and 
discrete-stage variants of a model of the standard color-
word Stroop effect (Cohen, Dunbar, & McClelland, 
1990).  Their results showed that a single-stage model, 
with no separate, thresholded processing stage to delay 
input to a decision stage for the sake of cleaning up 
perceptual input, produced additivity between color 
saturation and congruency, as seen in behavioral data 
(Stafford, Ingram, & Gurney, 2011).  The additive 
effect was achieved by binding the color and word 
inputs submitted to the model.  That is, the intensity of 
the word representation provided to the model was tied 
to the intensity (saturation) of the color representation.  
Even the discrete-stage variant of the Cohen et al. 
model was able to produce additivity between color 
saturation and congruency only when this binding of 
color and word representations was implemented.  
Given these simulation results, Stafford and Gurney 
suggested that "no simple inference from factor 
additivity, or its absence, to underlying architecture is 
possible" (p. 7). 

 Coupled with these simulation results, our finding 
that aspects of recent trial history can be a crucial 
determinant of whether one observes interactive or 
additive effects between factors indicates that a new 
way of interpreting the implications of such effects is 
needed.  Theoretical developments of this nature will 
depend on building a clearer understanding of how trial 
history influences current trial performance.  To this 
end, the next step should be to simplify the task 
environment by manipulating fewer independent 
variables than we have examined here.  Indeed, 
preliminary assessment of trial history effects in the 
word naming task with no semantic primes found only 
weak evidence for the influence of trial history on 
interactions between frequency or spelling-sound 
regularity and stimulus quality (D. Besner and S. 
O'Malley, personal communication, May 14-15, 2012).  
Additional experiments with substantial power and 
designs involving just a pair of critical factors should 
provide helpful constraints on the nature of trial history 
effects. 
 In general, we suggest that additivity and 
interaction between factors may have stronger 
implications for the nature of stimulus coding or 
decision processes than for the architectural 
components of processing operations.  Moreover, 
aggregating data when examining the relationships 
between factors may mask theoretically important 
undercurrents pertaining to trial history and stimulus 
representations and consequently may produce additive 
effects that turn out to be artifactual.  We believe that 
further efforts to develop computational models of how 
trial-to-trial variations in stimulus characteristics affect 
response time and accuracy will be very fruitful. 
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