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Abstract

The Smoothing Spline ANOVA (SS-ANOVA) requires a specialized construction of basis and penalty
terms in order to incorporate prior knowledge about the data to be fitted. Typically, one resorts to the
most general approach using tensor product splines. This implies severe constraints on the correlation
structure, i.e. the assumption of isotropy of smoothness can not be incorporated in general. This may
increase the variance of the spline fit, especially if only a relatively small set of observations are given.
In this article, we propose an alternative method that allows to incorporate prior knowledge without the
need to construct specialized bases and penalties, allowing the researcher to choose the spline basis and
penalty according to the prior knowledge of the observations rather than choosing them according to the
analysis to be done. The two approaches are compared with an artificial example and with analyses of
fixation durations during reading.

1 Introduction

Two lines of statistical research, in combination, provide a very flexible framework for the analysis of data
in psychology, linguistics, and many other fields [1–3]. First, smoothing splines offer a flexible framework
for modeling of observations given a set of covariates. Second, mixed models are an appropriate tool
for modeling clustered/grouped data. They allow for an explicit account of random effects, which model
deviations of individual behavior from the overall mean. The close relationship between spline estimation
and mixed models in a Bayesian context [4] led to their combination in the unified framework of generalized
additive mixed models [5, 6]. A generalized additive mixed model (GAMM) can be seen as an extension
of generalized linear mixed models (GLMMs), i.e. [7], by allowing smooth functions as fixed and random
effects or as an extension of the generalized additive models (GAMs), [8], by explicitly including random
effects.

As generalized linear mixed models (GLMM) are extensions of the linear one (LMM) that allow for
an analysis of non-Gaussian distributed responses, the same generalization is possible in the context of
the (linear) additive mixed models (AMM) towards the generalized additive mixed models (GAMM).
Throughout this article, we restrict ourselves to AMMs while all methodological results are also valid for
GAMMs.

In the context of LMMs, an observed variable y is modeled as a linear function of one or more fixed
effects and a set of variance components to incorporate individual deviations from the fixed effects.
AMMs extend LMMs by the means of replacing the linear fixed effects by arbitrary functions under
the assumption that these functions are smooth or at least continuous (these functions are then called
splines, i.e. [8]). Note that LMMs are therefore a special case of AMMs where the inferred spline is a
linear function of the covariates. This introduces a great flexibility for the modeling of experimental data.
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In correspondence to the ANOVA decomposition of fixed effects in the context of LMMs, it is possible
to perform similar decompositions in the context of AMMs. For example, the model zi = f(xi, yi) + εi
can be decomposed into zi = c + fx(xi) + fy(yi) + fxy(xi, yi) + εi, where c can be interpreted as the
model offset (intercept), fx(x) and fy(y) as the main effects and fxy(x, y) as the interaction effect. This
decomposition allows to determine if the modeled response variable y is sufficiently described by the
simple sum of the main effects fx and fy or if, in addition, the interaction effect fxy is needed as well. In
the presence of further covariates, these main and interaction effects are called partial effects. In contrast
to LMMs, AMMs formed solely by the sum of main effects, c + fx(x) + fy(y) are able to produce a
rich structured surface in the x, y plane as the main effects by themselves are already arbitrary smooth
functions. Therefore it is not easy to tell by visual inspection, if a given surface f(x, y) is expressible in
terms of a sum of main effect splines or if an interaction effect is required as well.

Furthermore, in contrast to the ANOVA decomposition of LMMs, the decomposition of some given
spline f(x, y) into main and interaction effect splines is not unique, without the specification in which
sense the spaces of the main and interaction effect functions are separated. A widely accepted approach
for a unique decomposition, is the so called smoothing spline ANOVA (SS-ANOVA) introduced in [9].
This decomposition constrains the main and interaction effects to have a 0-mean and further that the
interaction effect has 0-marginals. This decomposition has the advantage that the interpretation in terms
of main and interaction effects is closely related to the ANOVA decomposition of LMMs.

The SS-ANOVA decomposition is usually performed by fitting an AMM, that expresses the main and
interaction effects explicitly as separate model terms, where the spline bases of the interaction effect terms
and their associated penalties are systematically derived as so called tensor product spline bases. There
are R packages fitting (G)AMMs (i.e. mgcv, gamm4, gss [10–13]) that implement this decomposition,
hence providing a convenient access to this type of decomposition. The broad availability of this method
made it the standard method of spline decomposition. However, the restriction of the interaction effects
on the basis construction by tensor product splines leads to a choice of basis according to the analysis of
the statistical model rather than being guided by what may be known about the nature of the observed
data. In our opinion, this is problematic as it may reduce the statistical power of the AMM, especially
in cases where only a relatively small amount of data is available (compare section 3).

In this article we introduce an alternative approach to the SS-ANOVA decomposition of splines in the
context of AMMs. This approach maintains the freedom to choose any basis for the description of the
data while providing the same interpretation of the decomposition. This is achieved by decomposing a
fitted AMM post-hoc, which has been constructed using arbitrary spline bases and penalties, chosen for
an optimal description of the observed data.

In our opinion, the choice of the interaction effect basis is crucial as the conventional restriction to tensor-
product spline bases may ignore prior knowledge about the observed data or about the underlying process
that generated that data. Incorporating as much prior knowledge about the observations as possible into
the AMM fit ensures an optimal description of the observed data by the resulting model. Not taking into
account the nature of the data, may decrease the predictive power of the fitted model. The novel method
presented in this article, allows for a choice of the interaction effect basis solely by prior knowledge.
Obviously, if the optimal basis for the description of the observed data is the tensor product basis, i.e for
analyses as those carried out in [14,15], the two methods are equivalent.

In the next section we briefly introduce the SS-ANOVA decomposition as described in [9] and the post-hoc
decomposition of AMMs. In section 3 we showcase the effects of neglecting prior knowledge about the
data by an artificial example; in section 4 the new method is applied to the analysis of fixation durations
during reading.
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2 SS-ANOVA Decomposition

As mentioned above, we want to explain N observations zi where i = 1..N , usually referred as the
dependent variable in terms of two other measured quantities xi and yi, usually referred as the covariates,
as

zi = f(xi, yi) + εi ,

where f is a smooth, at least continuous function. Typically we assume that f is an element of a
reproducing kernel Hilbert space (RKHS) V with 1 ∈ V and that εi ∼ N (0, σ2) represent the residuals,
that is the part of the observations that cannot be explained by the function f . For the sake of definiteness
we will work through the section with data in the unit square xi, yi ∈ [0, 1]. All methods discussed here
also generalize to splines of more than two variables and arbitrary intervals. If there is a non-degenerated
quadratic functional J defined on V , with J(f) ≥ 0 ∀ f ∈ V , J(f) = 0 ⇔ f = 0 and λ > 0, the
minimization problem

min
f

(
1

N

∑
i

(zi − f(xi, yi))
2

σ2
+

λ

σ2
J(f)

)
has a unique solution, where ‖f‖2V = J(f). For the sake of simplicity we only consider non-degenerated
J . If J is degenerated such that ∃f ∈ V, f 6= 0 : J(f) = 0, the RKHS V , has to be restricted on the
orthogonal complement null space of J , i.e. [16].

Although the optimization is taken over an infinite dimensional space, the minimizer is located in a
finite dimensional subspace. If R(·, ·;x, y) is the reproducing kernel (RK) associated with V such that
〈R, f〉V = f , then f ∈ V can be written as

f =

N∑
i=1

αiR(·, ·;xi, yi) ,

and the quadratic functional J(f) can be expressed as

J(f) =

N∑
i,j

αiJijαj ,

where Jij = R(xi, yi;xj , yj). This makes the spline actually computable via

α̂ =
(
JTJ + λJ

)−1
JT~z and cov(α) = Σα = σ2

(
JTJ + λJ

)−1
. (1)

N (α̂,Σα) is then the posterior distribution of ~α given some observations zi and a prior distribution of ~α

as N
(

0, σ
2

λ J
−1
ij

)
.

An explicit example of a penalty term J(f) which is used frequently is

J(f(x, y)) =

∫∫ (
∂2f

∂x2

)2

+

(
∂2f

∂x ∂y

)2

+

(
∂2f

∂y2

)2

dx dy .

This penalty implies the assumption of an isotropic smoothness. This means that the wigglyness of the
function in x, y and all diagonals in the x, y-plane is penalized equally. Please note, that this particular
penalty is degenerated, as all constant and linear functions are unpenalized.

In general, splines in RKHS are a very versatile tool, they allow for a description of data incorporating a-
priori knowledge about it, like the assumption of smoothness above, by choosing an appropriate quadratic
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penalty J(f) on the spline. On the other hand one may be interested in a decomposition in terms of
main and interaction effects, like

f(x, y) = c+ fx(x) + fy(y) + fxy(x, y). (2)

Here c is a global offset (usually refereed as the model intercept), the functions fx and fy describe the part
that can be explained by x and y individually, whereas fxy is called an interaction term that describes
the part of z that needs x and y in a coupled way for the explanation.

The problem however is that (2) is highly non-unique as c can be absorbed into, e.g., fx, also fx and fy
into fxy by redefining the latter ones. A possible way to define an unique decomposition was proposed
by [9]. It requires that fx, fy and fxy have zero means

0 =

∫ 1

0

fx(x) dx =

∫ 1

0

fy(y) dy =

∫ 1

0

∫ 1

0

fxy(x, y) dx dy

and that further fxy has zero marginals

0 =

∫ 1

0

fxy(x, y) dx =

∫ 1

0

fxy(x, y) dy .

where the Lebesgue measures dx and dy may be generalized to some probability measures that enable to
incorporate the distribution of the observations xi, yi. This decomposes the space V into L2-orthogonal
subspaces V0, Vx, Vy and Vxy, such that

V = V0 ⊕ Vx ⊕ Vy ⊕ Vxy

and provides a unique definition of the functions c, fx, fy and fxy, which can be associated trivially with
their corresponding member in the spaces V0, Vx, Vy and Vxy respectively. Furthermore, these properties
allow for a direct interpretation of the single terms as model intercept, main and interaction effects.

The orthogonal projectors onto these spaces can be defined using the following averaging operators

(Ayf) (x) =

∫ 1

0

f(x, y)dy and (Axf) (y) =

∫ 1

0

f(x, y)dx . (3)

With these averaging operators, the model intercept, main and interaction effects are uniquely obtained
as

c↔ (AxAy)f(x, y) ,

fx ↔ (Ay(1−Ax))f(x, y) ,

fy ↔ (Ax(1−Ay))f(x, y) and

fxy ↔ ((1−Ax)(1−Ay))f(x, y) .

Therefore, there are two ways to obtain a decomposition like (2). The first approach starts from the one-
way decomposition of marginal splines and construct the bases and penalties for V0, Vx, Vy and Vxy. This
approach is generally known as the SS-ANOVA decomposition as described by Gu [9]. An alternative
approach, presented here, fits a bivariate spline f(x, y) to the observations and decomposes the resulting
spline post-hoc using the averaging operators defined above. This can be performed numerically for any
number of covariates and even analytically for some RKHSs (i.e. the bivariate thin plate spline, see
supplement). This approach however, is more general since it contains the classic approach as a special
case. Further it allows to choose the RKHS freely to describe the observations, in contrast to the classic
approach which resorts to tensor product splines.
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As mentioned before, the classic SS-ANOVA approach restricts the construction of the RKHS V of the
spline f to be a tensor product of two RKHSs Ṽx and Ṽy for the marginals in x and y respectively

as V = Ṽx ⊗ Ṽy. Given the RK R̃x(·;x) and R̃y(·; y) for these spaces, R(·, ·;x, y) = R̃x(·;x)R̃y(·; y) is

the RK for the product space V . Further, if the marginal spaces Ṽx and Ṽy can be decomposed using

the averaging operators defined above into i.e. 1x + Vx = AxṼx + (1 − Ax)Ṽx, where 1x is the space

of constant functions 1x =
{
f(x) ∈ Ṽx : f ∝ 1

}
with a RK ∝ 1 and Vx is the space of all ”zero mean”

functions Vx =
{
f(x) ∈ Ṽx : Axf = 0

}
with the RK Rx(·;x) = (1−Ax)R̃x. The decomposition of Ṽy can

be obtained analogously.

With this decomposition of the marginal spaces Ṽx and Ṽy, the product space V decomposes naturally
into spaces for the intercept, main and interaction terms as

(1x + Vx)⊗ (1x + Vx) = 1x ⊗ 1y + Vx ⊗ 1y + 1x ⊗ Vy + Vx ⊗ Vy ,

with the RK R0, Rx, Ry and Rx ·Ry respectively. This allows to describe each term of the decomposition
of f = c + fx + fy + fxy independently by its own RKHS. The joint penalty is then given by J(f) =
J0(c) + Jx(fx) + Jy(fy) + Jxy(fxy). Usually one introduces a weighting for each penalty term, i.e.

J̃(f) = θ−10 J0(c) + θ−1x Jx(fx) + θ−1y Jy(fy) + θ−1xy Jxy(fxy). This allows to treat some terms as unpenalized
by setting the corresponding θ to ∞, i.e. by setting θ0 = ∞, the intercept term c gets unpenalized.
Please note, that in this case the joint penalty J̃ gets degenerated, hence it only defines a semi-norm on
its associated RKHS Ṽ . This construction also generalizes to more than two covariates. A more general
description and examples are given in [9].

This systematic construction of the RK Rx, Ry and Rxy from the RK R̃x and R̃y of the marginal spaces
allows for an implementation of the SS-ANOVA decomposition into general purpose software packages, for
example the R [13] packages gss [12] and mgcv [17]. Unfortunately this also requires that the observations
are described by a tensor product spline, possibly neglecting a priori knowledge about the observations.
For example, unless the marginal RK functions are Gaussians, it is not possible to integrate the prior
assumption of a radial symmetry (isotropy) of smoothness. However, this assumption can be incorporated
into the fit of the bivariate spline f(x, y), i.e. by a thin plate spline.

In the following we outline a method that allows for an SS-ANOVA decomposition of arbitrary, multi-
variate splines without any conditions to the selected RK. In general, this method can not be carried out
analytically, except for some special cases like the bivariate thin plate spline. It relies on the fact, that if
it is possible to describe the data well with a single multivariate spline, the SS-ANOVA decomposition
can be carried out post-hoc using the averaging operators defined above, once the multivariate spline is
determined. This allows for the choice of the RKHS according to the prior knowledge about data or the
underlying process instead of resorting to a certain class of RKHS that is required by the decomposition
to be performed.

Again, let the observations zi be well described by a single bivariate spline f(x, y) such that zi = f(xi, yi)+
εi and the spline be an element of the RKHS defined by the RK R(x, y;x′, y′), hence the spline can
be parametrized as f(x, y) =

∑
i αiR(x, y;xi, yi) for a given set of observations. The function f can

then always be decomposed uniquely using the averaging operators above into a constant component
c = AxAyf(x, y), components depending on a single variable only fy(x) = Ay(1 − Ax) and fy(y) =
Ax(1−Ay)f(x, y) and a component capturing the part of f that can not be explained in terms of a sum
of the offset and marginals, fxy(x, y) = (1−Ax)(1−Ay)f(x, y). In the most general case these averaging
operators are weighted integrals over the spline f and therefore these projections can be carried out at
least numerically. Alternatively, instead of integrating directly over the spline, it is possible to integrate
over the reproducing kernel, such that the main and interaction effects are expressed in terms of weighted
sums of the averaged RKs,
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c =
∑
i

αi (AxAy R(x, y;xi, yi))

fx(x) =
∑
i

αi (Ay (1−Ax) R(x, y;xi, yi))

fy(y) =
∑
i

αi (Ax (1−Ay) R(x, y;xi, yi))

fxy(x, y) =
∑
i

αi ((1−Ax) (1−Ay) R(x, y;xi, yi)) ,

where the coefficients αi are the spline coefficients which can be estimated from the given data with eq.
(1) and the covariance of i.e. the model intercept c is then given by

var(c) = R0ΣαR
T
0 with (R0)i,j = AxAy R(x, y;xi, yi) .

Please note, that if the reproducing kernel R(·, ·; ·, ·) is formed as a tensor product of univariate marginal
splines, this approach is identical to the classic SS-ANOVA approach presented above.

For some special cases, the application of the averaging operators on the reproducing kernel can be
carried out analytically. In this case a numerical integration is not necessary and the decomposition can
be evaluated directly using the analytical expressions for the averaged reproducing kernels. In Text S1,
the integrals over the RK of a bivariate thin plate spline are given.

3 Comparison of methods with an artificial example

To demonstrate the effects of neglecting prior information about the data on the spline estimator, we
performed SS-ANOVA decompositions by using tensor product splines and the post-hoc decomposition
method on a set of 100, relatively small samples from a known function f(x, y) = 2(x− 1

2 ) + sin(2πy) +
sin(2πx) · cos(2πy) (see Figure 1 a). Each sample consists of 30 (small sample set) and 300 (big sample
set) values of f(x, y), sampled uniformly and independently from the [0, 1]2 plane with additional noise
∼ N (0, 14 ) to represent observational noise. For the tensor product spline approach, a tensor product of
two cubic regression splines is chosen while for the post-hoc decomposition, a single bivariate thin plate
spline is fitted to the data.

(Figure 1 about here.)

In Figure 1, mean and standard deviation of the predictors for the decomposition (f̂x, f̂y and f̂xy) are
shown. The post-hoc estimators of the main effects, show the much smaller variance compared to the
estimators by the tensor product spline approach (for N = 30, compare Figure 1 b). The trace of the
estimated covariance matrix (see Table 1) allows for a quantitative comparison of the variability of the
spline estimators).

(Table 1 about here.)

The variability of the estimators (f̂x, f̂y and f̂xy) from the small data sets (N = 30), using the tensor
product approach is much higher compared to the variability of the post-hoc estimators. This is ex-
plained by the additional a priori information used by the post-hoc approach, which assumes isotropic
smoothness of the spline in contrast to the SS-ANOVA decomposition using tensor product spline. This
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prior information gets less important as more observations are added, which results in almost identical
SS-ANOVA decompositions for a larger data set (N = 300, compare Figure 1 c).

Please note that for the particular example above, the true function f(x, y) has only almost isotropic
smoothness which implies a small additional bias on the estimate of main and interaction effects (see
Table 1).

(Table 2 about here.)

In order to verify our method, we conducted a second simulation, where the underlying function has
isotropic smoothness by construction. Here we sampled from the function f(x, y) = 2(x− 1

2 ) + 2( 1
2 −y) +

exp
(
− ((x−0.5)+(y−0.5))2

0.08

)
. Like in the first example, the variability and the bias of the spline estimates are

obtained. While the biases of the tensor product and post-hoc decomposition approaches are comparable
for this example, the variability of the post-hoc decomposition approach is generally smaller, especially
in cases of small samples-sizes (compare Table 2).

In general, if no additional assumption about the underlying function can be made, the tensor product
spline will be the most general approach to describe the data by the means of spline functions. In these
cases the post-hoc decomposition of a tensor product spline will have no advantage over the classic SS-
ANOVA decomposition and any additional (unjustified) assumption implied by the chosen spline penalty
will result in a biased estimate (compared to the tensor product spline). If, however, the underlying
function satisfies the a-priori assumptions, the post-hoc approach allows for an ANOVA decomposition
of smoothing splines that incorporate these assumptions, reducing the variability of the spline estimates
without increasing the bias compared to the tensor product approach.

We therefore suggest that in cases where no a-priori knowledge about the underlying functions is present,
a two step method should be used. In the first step, a tensor product spline is fitted to the data in order
to get some information about the generating function. If the result of the first step suggests, for example
that the generating function can be described well by a thin-plate spline, the post-hoc decomposition
should be used to refine the first estimates.

4 Application to fixation durations during reading

During reading the eyes move in alternations of pauses (i.e., fixations lasting between 150 and 300 ms)
and quick movements (i.e., saccades of 10 to 30 ms) which carry the eyes on average five to ten letters
forward. Visual information is processed only during fixations; we are practically blind during saccades.
Fixation durations are sensitive to processing difficulty. For example, they are short for frequent words
(such as prepositions and conjunctions) and long for rare words. A word’s frequency is measured as
the logarithm of its occurrence in 1 million printed words. Fixation durations are also sensitive to word
length (i.e., fixations are longer for long words, see Figure 2 b-d) and increase with the amplitude of the
last saccade (see Figure 2 a). Therefore, these variables were also included as covariates in the following
AMMs, but the focus here was on frequency effects. We analyzed around 68000 fixations that were the
first and only fixation on a word; the fixations were bordered by the eyes entering the word from the left
and leaving the eyes to the right (i.e., they were first-pass single fixation durations). Further, in order
to reduce model complexity, only those fixations were considered where the neighboring words (N − 1
and N + 1) were fixated too. These fixations form the majority (≈ 68000 out of 118000) of all first-pass
single fixations.

Fixations were measured on 144 sentences, read by 275 German readers; for details see [18,19]. Readers
differ reliably in their average fixation duration. Therefore, we fitted an additive mixed model, estimating
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also a variance component for random effects of readers in fixation durations. The following models where
fitted to the data:

τN = c0 + sA(AN ) + sl,N−1(lN−1) + sl,N (lN ) + sl,N+1(lN+1)

+ sν,N−1,N (νN−1, νN ) + sν,N,N+1(νN , νN+1) + rid + rw + ε , (4)

τN = c0 + sA(AN ) + sl,N−1(lN−1) + sl,N (lN ) + sl,N+1(lN+1)

+ sν,N−1(νN−1) + sν,N (νN ) + sν,N+1(νN+1)

+ tν,N−1,N (νN−1, νN ) + tν,N,N+1(νN , νN+1) + rid + rw + ε . (5)

(Figure 2 about here.)

The two additive mixed models (4) and (5) describe the log fixation duration τN on a word in terms of
the same covariates: lN−1, lN and lN+1 are the word lengths (measured in logarithmic units, Figure 2 c)
of the previous, the fixated and next word, respectively, and νN−1, νN and νN+1 are the word frequencies
(also measured in logarithmic units, Figure 3 a) of them; the term c0 represents the model intercept, AN
the amplitude of the incoming saccade (measured in letters, Figure 2 a), rid the random effect intercept
for each participant, rw the random effect intercept for each fixated word and ε the model residuals.
The first model (4) was fitted to the data and the terms sν,N−1,N (νN−1, νN ) and sν,N,N+1(νN , νN+1)
were then decomposed post-hoc into main and interaction frequency effects. These two splines were
chosen to be thin plate splines, implying the a priori assumption of isotropic smoothness. The sec-
ond model (5) was constructed according to [9] to perform the SS-ANOVA decomposition using tensor
product splines without the isotropy assumption. Therefore the frequency main effects sν,N−1(νN−1),
sν,N (νN ) and sν,N+1(νN+1) are expressed explicitly as terms of the AMM and the interaction effects
tν,N−1,N (νN−1, νN ) and tν,N,N+1(νN , νN+1) are constructed as tensor product splines, which incorpo-
rates no additional assumption about the data.

(Figure 3 about here.)

The novel aspect of the present AMM is a spline-based re-evaluation of distributed processing during
reading, that is of simultaneous processing of several words during fixations. Fixation durations depend
not only on the frequency of the fixated word N , but also on the frequencies of the words to the left
(N − 1) and to the right (N + 1) of the current fixation location [18–20]. Thus, during a fixation we
may simultaneously observe effects of the frequencies of at least three words. Most striking, however,
is the difference between these three duration-frequency relations. As shown in Figure 3 a, they are (a)
monotonic for word N − 1 (left), (b) clearly non-monotonic for word N (middle) and (c) also for word
N + 1 (right). Thus, the difficulty of word N − 1 is strongly expressed in fixations on word N , but the
frequency of the upcoming word N +1 has only a weak effect on this fixation. The non-monotonic profile
for the N -frequency effect is consistent with other evidence for distributed-processing constraints [19].
The reliability of specific shapes associated with frequency effects have been established with third-order
polynomial trends for different groups of readers, for example young and old adults, and for reading
sentences in the expectation of easy or difficult questions [21].

As mentioned above, we are in the comfortable situation of having a relatively large dataset (≈ 68000
fixations). Following from the results of section 3 we may expect the results of the decompositions to be
almost independent of the chosen method. As shown in the Figure 3 a, this is indeed the case and the
decompositions using the tensor product spline and the post-hoc approach reveal comparable results.

(Table 3 about here.)

To compare these two methods and the effect of neglecting prior information about the data, we divided
the complete dataset into smaller sets of 200 samples taken randomly from the complete set. The decom-
position into the frequency main and interaction effects is then performed for each subset independently.
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The mean and standard deviation of the resulting main effects are shown in Figure 3 b. Although the
advantage of the post-hoc decomposition is barely visible in Figure 3b, the variability of the interac-
tion effect splines obtained by the means of a post-hoc decomposition is much smaller compared to the
variability of those obtained by the tensor product spline approach (compare Table 3).

(Figure 4 about here)

A novel question in this line of research is whether it is sufficient to model the three frequency effects
relating to words N −1, N , and N + 1 as three main effects or whether, in addition to these main effects,
we also need two bivariate interaction terms capturing, for example, (a) the joint effect of frequencies of
word N − 1 and word N (i.e., the left two words) and (b) the joint effect of frequencies of word N and
word N + 1 (i.e., the right two words). Figure 4, middle row, displays the two corresponding surfaces for
the bivariate-TPS based post-hoc decomposition.

Figure 4, bottom row, shows the parts of the partial interaction effects which are point-wise significant,
means all points in the frequency plane where the spline estimate, i.e ŝν,N−1,N (νN−1, νN ), is larger than
twice its standard deviation. Obviously, there are significant interaction effects. Particularly in the cases
of a low-frequent word N−1 and a medium-frequent word N as well as in the case of high-frequent words
N and N + 1.

Although, these interaction effects are relatively well localized in the word-frequency planes and therefore
explain only a small portion of the response surfaces (Figure 4, top row), their contribution to the fixation
duration must be considered as theoretically relevant.

In summary, AMMs are very useful for the description of non-monotonic main effects (and their interac-
tions) on fixation durations in reading research.
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Tables

tensor prod. post-hoc
N = 30 N = 300 N = 30 N = 300

tr
(

Σf̂x

)
6.59 0.23 2.44 0.24

tr
(

Σf̂y

)
7.67 0.39 3.35 0.25

tr
(

Σf̂xy

)
1273.72 42.53 269.59 38.00

MSB f̂x 0.0100 0.0002 0.0018 0.0003

MSB f̂y 0.0087 0.0002 0.0360 0.0018

MSB f̂xy 0.0316 0.0034 0.0408 0.0072

Table 1. Comparison of the variability and mean squared bias (MSB) of the spline estimators from
small and large data sets of example 1. The variability is given as the trace over the covariance matrix
of the spline evaluated on a regular grid, while the MSB is the squared bias of these spline estimates
averaged over that grid. Each spline was fitted to one of 100 independent subsets of the complete
dataset.

tensor prod. post-hoc
N = 30 N = 300 N = 30 N = 300

tr
(

Σf̂x

)
3.42 0.27 1.60 0.16

tr
(

Σf̂y

)
2.52 0.26 1.51 0.14

tr
(

Σf̂xy

)
358.53 22.70 192.48 12.75

MSB f̂x 0.0154 0.0002 0.0119 0.0004

MSB f̂y 0.0116 0.0001 0.0095 0.0003

MSB f̂xy 0.1182 0.0173 0.1183 0.0230

Table 2. Comparison of the variability and mean squared bias (MSB) of the spline estimators from
small and large data sets of example 2.

tensor prod. post-hoc

tr
(
Σŝν,N−1

)
0.034 0.031

tr
(
Σŝν,N

)
0.063 0.040

tr
(
Σŝν,N+1

)
0.023 0.021

tr
(
Σŝν,N−1,N

)
7.83 1.883

tr
(
Σŝν,N,N+1

)
10.45 0.958

Table 3. Comparison of the variability of the word-frequency spline estimators.
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Figure Legends
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Supporting Information Legends

Text S1: Explicit post-hoc decomposition of bivariate TPS.
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Figure 1. Comparison of SS-ANOVA decompositions using the tensor product and
post-hoc approach. a) The true functions. b) Comparison of the mean E[f̂ ] and standard deviation

sd(f̂) of the main (columns 1 & 2) and interaction effects (column 3) estimators over 100 independent
sample sets, each of size N = 30. The first row shows the results using the tensor product approach
while the second row shows the same estimators for the post-hoc decomposition of a thin-plate spline.
The last column shows the sum of the main and interaction effect means. Although the means are
almost identical, the estimators of post-hoc decomposition have a much smaller variance and therefore a
much higher reliability. c) Results of the same analysis as above (b) but using a bigger sample size, here
N = 300. As more statistical evidence is provided by the data, the a priori knowledge used for the
post-hoc decomposition (isotropic smoothness) has a smaller influence on the outcome. Therefore the
results are almost identical.
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Figure 2. Partial main effects of the incomming saccade amplitude (a) and the lengths of
the words N − 1, N & N + 1 (b-d). a) Partial main effect of incoming saccade length. b, c & d)
Partial main effects of the lengths of the words N − 1 (left), N (middle) and N + 1 (right).
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Figure 3. Comparison of the SS-ANOVA decompositions performed on a small dataset (b)
and the same decompositions performed on the complete dataset (a). a) Comparison of the
frequency main effects, as obtained by the SS-ANOVA decompositions using the tensor product
approach (top row) and post-hoc decomposition (bottom row). Please note, as this analysis
incorporates the complete dataset, the given confidence intervals are the posterior standard deviations
around the spline estimator means, in contrast to the confidence intervals shown in (b), which describe
the variability of the mean estimators of 100 different subsets of the complete dataset. b) Comparison
of the frequency main effects, as obtained by the SS-ANOVA decompositions using the tensor product
approach (top row) and the post-hoc decomposition (bottom row) repeatably performed on a small
subset (400 samples) of the complete data set. The confidence intervals show the standard deviations of
the mean estimators over all repetitions.
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Figure 4. Sum of main and partial interaction effects (top row) and partial interaction
effects of frequencies (mid row) of words N − 1 and N (left column) and N and N + 1 (right
column). The interaction effects of word frequencies (mid row) on single-fixation durations where
obtained by the means of the bivariate TPS-based post-hoc decomposition. The masked significant
areas of these interaction effects are shown in the bottom row. The interaction effect is considered
point-wise significant at point i.e. νN , νN+1, if the mean of the interaction effect
ŝν,N,N+1(νN , νN+1) ≥ 2

√
var(sν,N,N+1(νN , νN+1)).


