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Abstract

Linear mixed-e�ects models have increasingly replaced mixed-model analyses of variance for sta-

tistical inference in factorial psycholinguistic experiments. Although LMMs have many advantages

over ANOVA, like ANOVAs, setting them up for data analysis also requires some care. One simple

option, when numerically possible, is to �t the full variance-covariance structure of random e�ects

(the maximal model; Barr et al., 2013), presumably to keep Type I error down to the nominal α in

the presence of random e�ects. Although it is true that �tting a model with only random intercepts

may lead to higher Type I error, �tting a maximal model also has a cost: it can lead to a signi�cant

loss of power. We demonstrate this with simulations and suggest that for typical psychological and

psycholinguistic data, models with a random e�ect structure that is supported by the data have

optimal Type I error and power properties.

Keywords: Power, Linear mixed e�ect models, hypothesis testing

1. Introduction

During the last ten years, linear mixed-e�ects models (LMMs, e.g., Pinheiro and Bates, 2000;

Demidenko, 2013) have increasingly replaced mixed-model analyses of variance (ANOVAs) for sta-

tistical inference in factorial psycholinguistic experiments. The main reason for this development

is that LMMs have a number of advantages over ANOVAs. From a pragmatic perspective, the

most prominent one is that a single LMM can replace two separate ANOVAs with subjects (F1

ANOVA) and items (F2 ANOVA) as random factors, which does away with ambiguities of inter-
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pretation when e�ects are signi�cant in only one of the two default ANOVAs. Other advantages

are, for example, better preservation of statistical power in the presence of missing data (Baayen,

2008; Pinheiro and Bates, 2000) and options for simultanenous analyses of experimental e�ects and

individual (or item) di�erences associated with them (González, De Boeck and Tuerlinckx, 2014;

Kliegl, Wei, Dambacher, Yan and Zhou, 2011).

The advantages of LMMs over ANOVAs come at a cost; setting up an LMM is not as straightfor-

ward as running an ANOVA. In response to this greater complexity of LMMs, Barr, Levy, Scheepers

and Tily (2013) proposed that LMMs with the most complex feasible random-e�ect structure should

be implemented for the analysis of factorial experiments. Here, we show on the basis of simula-

tions, that this proposal may imply a signi�cant loss in power whereas a parsimonious mixed model

(Bates, Kliegl, Vasishth and Baayen, 2015a) containing only variance components supported by the

data balances Type I error and power. To this end, we brie�y review the core di�culty with LMM

speci�cation.

An LMM requires not only the speci�cation of the usual main e�ects and interactions of the

experimental design (i.e., �xed e�ects), but also of variance components and correlation parameters

associated with the random factors, usually subjects and items. In principle, aside from estimating

variance components for the mean response of each random factor (i.e., random intercepts), the

model estimates variance components for each within-subject and each within-item main e�ect and

interaction term (i.e., random slopes) as well as associated correlations parameters.

Moreover, again in principle, there is no, or only very rarely, reason to assume that some of these

variance components or correlation parameters are truly zero, because there are no natural constants

in �elds like psychology or psycholinguistics. Unfortunately, even if the parameters are not zero, it

is unlikely that all of them are su�ciently large to be reliably detected against the background of

noise in the data (i.e., the residual variance). In part, this may also re�ect limitations of optimizers

in the available computer programs. As a consequence, the program may not converge to a stable

solution; the model is overparameterized or degenerate relative to the information in the data. In

this case, everybody agrees that it is up to the scientist�possibly with some help by the computer

program�to reduce such an overparameterized model to one that is supported by the data, usually

by �xing some of the small variance components or correlation parameters to zero (for example,

see discussion in Barr et al., 2013, p. 276).

Fortunately, with enough data for every subject and every item, the programs may converge
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and may provide what looks like an acceptable solution. Obviously, in such a model many of the

model parameters may still be very close to zero and consequently removing such parameters from

the model will probably not signi�cantly decrease the goodness of �t of the model. How models are

to be selected is itself a highly active �eld of research, covering all �elds of advanced multivariate

statistics (i.e., it is not an LMM-speci�c problem), and, at this point in time, there is no perfect

solution, but there are accepted ones (e.g., Vandekerckhove, Matzke and Wagenmakers, 2015). Such

reduction in model complexity leads to a simpler model than the maximal model. However, many

psychologists do not want to engage in and possibly have to defend their model selection. And

indeed, as long as the maximal model were to yield the same estimates as a justi�ably reduced

parsimonious model, there actually would be no need for model reduction. Most importantly, by

�tting the maximal model, one avoids the risk of falsely removing a variance component which

may lead to anti-conservative test statistics for �xed e�ects (e.g., Barr et al., 2013; Schielzeth and

Forstmeier, 2009). Similarly, failure to model correlations may increase the Type I error rate of

the associated �xed e�ects above the speci�ed signi�cance criterion.1 In other words, the maximal

model protects a researcher from falsely reporting a spurious �xed e�ect that originates from a

misspeci�cation of the unknown true random-e�ect structure.

It was against this background that Barr et al. (2013) concluded on the basis of simulations

that maximal LMMs yield appropriate test statistics for �xed e�ects. We paraphrase their recom-

mendation as follows:

[T]he maximal random e�ect structure should be �tted to the data. This includes

a variance component for subject-related and item-related intercepts, for every within-

subject and within-item �xed e�ect, and in the ideal case even all possible correlations

between these random e�ects. The random e�ect structure should be reduced if and

only if the maximal model does not converge.

In many ways, this is a stunning recommendation because it provides a very simple solution

to a problem that is quite pervasive in many types of statistical analyses. How is it possible that

potentially over�tting an LMM incurs no cost? In the following, we will show that there is a

substantial cost: The additional protection against Type I errors implies a signi�cant increase in

1The signi�cance level, usually 5%, should guarantee a rate of 5% false positives in the long run.
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Type II error rate or, in other words, a loss in statistical power to detect the signi�cance of �xed

e�ects. We will also show that selection of a parsimonious LMM is a promising alternatives to the

maximal model, balancing the Type I error rate and power.

2. Simulation

If there is any situation where the maximal model approach implies a cost in terms of statistical

power, we should be able to demonstrate the problem with a simulation of a simple experiment,

estimating the Grand Mean (intercept) and a single �xed e�ect as described below.

2.1. Speci�cation of the simulation models

Here, Yc,s,i refers to the dependent variable, the subscripts stand for condition (c), subject (s)

and item (i), the by-subject and by-item intercepts are S0,s and I0,i, and the corresponding slopes

are S1,s and I1,i. The �xed e�ects are β0 and β1 and the residual error is εc,s,i.

Yc,s,i = β0 + S0,s + I0,i + (β1 + S1,s + I1,i) Xc + εc,s,i , S0,s

S1,s

 ∼ N
~0,

 τ200 ρSτ00τ11

ρSτ00τ11 τ211

 ,

 I0,i

I1,i

 ∼ N
~0,

 ω2
00 ρIω00ω11

ρIω00ω11 ω2
11

 ,

εc,s,i ∼ (0, σ2) .

This generating process mimics a very simple experiment where 20 items (i = 1, . . . , 20) are

presented to 50 subjects (s = 1, . . . , 50) under two conditions (c = 1, 2), encoded as Xc=1 = −0.5

for the �rst and Xc=2 = +0.5 for the second condition. For example, we can collect response

times under two conditions with a grand mean of 2000 ms and an experimental e�ect of 25 ms.

Accordingly, the model intercept was chosen as β0 = 2000 and the experimental e�ect (i.e., the

di�erence between the two experimental conditions) is either β1 = 0 (assuming the H0) or β1 = 25

(assuming H1). The key concern is how the complexity of the random-e�ects structure of the LMM

a�ects the estimate and the signi�cance of the �xed e�ect β1, with respect to both Type I error

and power.

4



In the generating process, there is a random intercept for each subject S0,s and a random slope

(i.e., experimental e�ect) for the condition within each subject S1,s. The standard deviation of the

subject speci�c random intercept is τ00 = 100, while the standard deviation of the subject speci�c

random slopes will be varied on the interval τ11 ∈ [0, 120], to simulate the e�ect of the size of the

random slope on Type I error rate and power. These two subject speci�c random e�ects are chosen

to be correlated with ρS = 0.6.

Additionally there is a random intercept I0,i and slope I1,i for item. Again, the standard

deviation of the random intercept is (ω00 = 100). Like the standard deviation of the subject

speci�c random slope, the standard deviation of the item random slope will be varied on the

interval ω11 ∈ [0, 120] and the item speci�c random e�ects are again correlated with ρI = 0.6.

Finally, the model residuals are independent and identically distributed, εc,s,i ∼ N (0, 3002).

Note that the item- and subject-related random slope standard deviations and the number of items

and subjects were chosen to ensure that these variance components will be present, but barely

detectable in the simulated data over a wide range of the interval [1, 120].

Given that every item is presented to each subject in each of the two conditions, the total

number of data points is 2000. From this generating process, a sample is drawn and �ve LMMs

are �tted to the data that di�er only in the structure of the random-e�ects part. The models are

estimated under the null hypothesis of a zero �xed e�ect and under the alternative hypothesis of a

�xed e�ect with value β1 = 25.

The �rst model is the maximal model, including the estimation of correlation parameters (ρI

and ρS) that by de�nition are �xed at 0.6 in the generating process. This model matches the

generating process exactly unless the variances of the random slopes are set to 0.

Yc,i,s = β0 + S0,s + I0,i + (β1 + S1,s + I1,i) Xc + εc,s,i , (1) S0,s

S1,s

 ∼ N
~0,

 τ200 ρSτ00τ11

ρSτ00τ11 τ211

 ,

 I0,i

I1,i

 ∼ N
~0,

 ω2
00 ρIω00ω11

ρIω00ω11 ω2
11

 ,

εc,s,i ∼ (0, σ2) .

Compared to the maximal one, the second model only di�ers in the two correlation parameters
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(i.e., it is model (Eq. 1) where ρS and ρI are set to 0).

Yc,i,s = β0 + S0,s + I0,i + (β1 + S1,s + I1,i) Xc + εc,s,i , (2) S0,s

S1,s

 ∼ N
~0,

 τ200 0

0 τ211

 ,

 I0,i

I1,i

 ∼ N
~0,

 ω2
00 0

0 ω2
11

 ,

εc,s,i ∼ (0, σ2) .

The third model is a reduced one which ignores the item speci�c random slope (i.e., it is model

(Eq. 2) where ω11 = 0).

Yc,i,s = β0 + S0,s + I0,i + (β1 + S1,s) Xc + εc,s,i , (3) S0,s

S1,s

 ∼ N
~0,

 τ200 0

0 τ211

 ,

I0,i ∼ N
(
0, ω2

00

)
,

εc,s,i ∼ (0, σ2) .

The fourth model excludes the random slope for subject (i.e., it is model (Eq. 2) where τ11 = 0)

while keeping the random slope for item.

Yc,i,s = β0 + S0,s + I0,i + (β1 + I1,i) Xc + εc,s,i , (4)

S0,s ∼ N
(
0, τ200

)
, I0,i

I1,i

 ∼ N
~0,

 ω2
00 0

0 ω2
11

 ,

εc,s,i ∼ (0, σ2) .

The �fth model excludes both random slopes (i.e., it is model (Eq. 2) where τ11 = ω11 = 0).
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Yc,i,s = β0 + S0,s + I0,i + β1Xc + εc,s,i , (5)

S0,s ∼ N
(
0, τ200

)
,

I0,i ∼ N
(
0, ω2

00

)
,

εc,s,i ∼ (0, σ2) .

2.2. Two simulation scenarios

There are two simulation scenarios. First an appropriate model should yield adequate test statis-

tics even if covariance parameters in the true model are set to zero. Obviously, these parameters

would be removed in a reduced model (unless they were explicitly expected on theoretical grounds).

In the �rst scenario, we set the e�ect-related (co-)variance parameters to zero; that is, we know that

the maximal model is overparameterized with respect to these parameters. This scenario illustrates

the maximal cost of the maximal model speci�cation.

Second, an appropriate model should not be a�ected by small (co-)variance components. Al-

though they are present in the generating process, they are at or below the threshold of detectability.

In this second scenario, we are simulating the situation where the maximal model actually matches

the generating process, but with a relatively small sample size, this maximal random-e�ect struc-

ture may not be supported by the data. In such cases, as far as we know, it is unknown whether

a model with a richer random-e�ect structure will outperform a parsimonious model without these

variance components.

2.3. Determination of the error rates

Both simulation scenarios involve two runs. In the �rst run, the Type I error rate of the models

were estimated. In each iteration of the simulation, a sample was drawn from the generating process

above, where β1 = 0 (no �xed e�ect of condition in the generating process). Then all �ve models

were �tted (using the lme4 package, Bates, Mächler, Bolker and Walker, 2015b; R Core Team,

2014) to this data excluding the �xed e�ect for condition (H0) and the same models where �tted to

the same data including the �xed e�ect of condition (H1). If any of these ten model �ts (including

the maximal ones) did not converge, the sample was to be redrawn. Thus, it is ensured that the

simulation results are not in�uenced by numerical convergence issues.
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Then, the false-positive detection of the �xed e�ect for condition was determined with a like-

lihood ratio test (LRT). If the di�erence of the deviances between a model under H0 (excluding a

�xed e�ect for condition) and the same model under H1 (including that �xed e�ect) is larger than

3.85, the �t was considered as a false-positive detection of that �xed e�ect. This criterion implies a

nominal Type I error rate of about α = 0.05, assuming a chi-squared distribution with one degree

of freedom for the di�erence of the model deviances. In the second run, we determined power by

drawing samples from the generating process with β1 = 25 using the criterion χ2
1 ≥ 3.85 for the

same models.

Given the Type I error rate and power estimates, the performance of the maximal model speci-

�cation can be compared with the performance of the parsimonious model (see below). Obviously,

the best model is the one providing maximal power while maintaining a Type I error rate at the

nominal level (e.g., α = 0.05). The latter, however, not only depends on the model structure but

also on the hypothesis test being used. For example, the LRT approximates the sample distribution

of the deviance di�erences by a chi-squared distribution. This approximation immediately implies

that the test statistic of an LRT for a �xed e�ect in an LMM is not exact and the obtained Type I

error rate will not match the expected α exactly. This discrepancy between the expected and the

observed Type I error-rate decreases with increasing sample sizes. The unknown exact Type I error

rate of the test statistic, however, increases the di�culty of comparing the model performances.

2.4. Model selection

With our simulations, we investigate the selection of a parsimonious, that is, a possibly reduced

model for a given data set. Hence a criterion must be chosen to decide whether the complexity of a

certain model is supported by the data. Naturally, the most complex model will always provide the

best �t for a given data set, but bearing the risk of over-�tting the data. Therefore, every model

selection criterion will try to balance the goodness-of-�t with the model complexity.

Popular model selection criteria are the Akaike information criterion (AIC, Akaike, 1998),

Bayes or Schwarz information criterion (BIC, Schwarz, 1978) and the aforementioned likelihood

ratio test. For our simulations, we use the LRT criterion (an evaluation of the AIC can be found

in the Appendix). The BIC is known to put a strong penalty on the model complexity for small

sample sizes (e.g., Vandekerckhove et al., 2015).

In contrast to the AIC or BIC, which allows us to compare several models at once, the LRT can
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only compare two models. Hence, an additional heuristic is needed to choose the best model out of

a set of candidate models. For our simulations, we chose the backward-selection heuristic. There,

one starts with the most complex model (i.e., the maximal model, Eq. 1) and reduces the model

complexity (i.e., model 1 → 2 → 3 → 4 → 5) until a further reduction would imply a signi�cant

loss in the goodness-of-�t. The signi�cance level of this model-selection criterion is speci�ed by the

chosen αLRT of the LRT. Within the context of model selection, it is important to resist the re�ex

of choosing αLRT = 0.05. The αLRT cannot be interpreted as the "expected model-selection Type I

error-rate" but rather as the relative weight of model complexity and goodness-of-�t. For example,

choosing αLRT = 0, an in�nite penalty on the model complexity is implied and consequently the

minimal model is always chosen as the best, irrespective of the evidence provided by the data.

Choosing αLRT = 1 implies an in�nite penalty on the goodness-of-�t, and the maximal model is

always chosen as the best. Therefore, choosing αLRT = 0.05 may imply an overly strong penalty

on the model complexity and hence select a reduced model even if data favor a more complex one.

For our simulations, we chose αLRT = 0.2.

In fact, when comparing two nested models, the LRT with αLRT ≈ 0.157 is equivalent to the

AIC. Hence, one may expect that the LRT with αLRT = 0.2 puts a slightly larger penalty on the

goodness-of-�t compared to the AIC and therefore, it will choose the more complex model more

frequently (see also Appendix).

3. Results

The simulations were carried under two scenarios. In the �rst scenario, we investigated the cost

incurred by the maximal model with respect to the power to detect the �xed e�ect. In this case,

the variances of both random slopes where �xed to 0 in the generating process (and, by implication,

correlation parameters were zero as well). In this worst case scenario for the maximal model, the

intercept-only model (Eq. 5) matches the generating process; all other models (Eqs. 1-4) were

overparametrized by construction.

In the second scenario, we varied the standard deviations of the random e�ect slopes from

τ11 = ω11 = 0 to τ11 = ω11 = 120 while keeping the correlation of the within-subject random e�ects

and the within-item random e�ects �xed at 0.6. The goal was to determine how Type I error rates

and power change as random slopes increase. Obviously, the maximal model should be favored for

large random slopes. Moreover, the inclusion of models two to four in the simulations allowed us to
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examine whether model selection with a standard criterion yields better results than the maximal

model when weak random slopes are present in the generating process.

3.1. Worst case scenario

The worst case scenario allowed us to determine the maximal cost implied by the maximal

model. In this case, the variance of both random slopes was set to zero in the generating process.

Hence the intercept-only model (Eq. 5) matched the generating process and the other four models

were overparametrized.

Table 1 summarizes the Type I error rate and power estimates, obtained in the simulation

with 10,000 iterations for each model along with their 95% con�dence intervals (in parenthesis).

Power decreased with model complexity. Moreover, the Type I error rates of all models were not

substantially larger than the expected level α = 0.05. Unsurprisingly, model (Eq. 5) provides the

best power while maintaining a Type I error rate close to the nominal α = 0.05. Please note that

test statistics of the LRT for the �xed-e�ect slope (β1) is only approximately a χ
2 distribution, even

in the case where the model matches the generating process exactly. Hence, the chosen signi�cance

criterion does not correspond exactly to the expected α = 0.05.

Unsurprisingly, the intercept-only model (Eq. 5) rather than the maximal model (Eq. 1) performs

best for this worst case scenario. Most interestingly, the maximal model has even a substantially

smaller Type I error rate than the nominal α = 0.05. Hence it appears to be over-conservative at

the cost of power. Similar results with a similar simulation were reported in Barr et al. (2013).

They, however, concluded that loss in power is negligible.

Type I error rate Power (1 - Type II error rate)

Model 1: Maximal 0.0304 (0.0272, 0.0340) 0.364 (0.354, 0.373)

Model 2: Zero Correlation 0.0331 (0.0386, 0.0368) 0.377 (0.367, 0.386)

Model 3: Zero Item Slope Var. 0.0424 (0.0386, 0.0466) 0.427 (0.417, 0.437)

Model 4: Zero Subj Slope Var. 0.0396 (0.0359, 0.0436) 0.403 (0.393, 0.413)

Model 5: Random Intercepts 0.0510 (0.0468, 0.0555) 0.455 (0.445, 0.465)

Table 1: Type I error rates and power of models (Eqs. 1-5) in the case of a generating process without random

slopes; 95% con�dence intervals are also presented. In this case, random-intercept-only model (Eq. 5) matches the

generating process, while models (Eqs. 1-4) are overparametrized by construction.
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3.2. Small random slopes

In the �rst simulation scenario, we showed that the maximal model leads to substantially reduced

power over the intercept-only model when the latter model matches the generating process. Hence,

one may expect that even if the maximal model is true, that is, even in the case where the random

slope variances of the generating process are non-zero, a reduced model (Eqs. 2-5) may hold a power

advantage over the maximal model (Eq. 1), if its complexity is not supported by the data.

Of course, we do not know a priori whether a certain random-e�ect structure is supported by

the data. We can determine a parsimonious model with a standard criterion such as the LRT. This

criterion weights the goodness-of-�t of each model with its complexity in order to select the best

model for a given data set and guard against over-�tting the data.

Therefore, in the second simulation scenario, we compared the performance (Type I error rates

and power) of the maximal model (Eq. 1) with the model selected by the LRT (out of Eqs. 1-5) as

a function of the random-slope variances (see also Westfall, Kenny and Judd, 2014). This scenario

allowed us to study whether LRT detect the need for an increased model complexity with increasing

random-slope standard deviations and therefore maintain a Type I error rate close to the nominal

α.

For each iteration of this simulation we chose the random-slope standard deviations in 20,000

steps from τ11 = ω11 = 0 to τ11 = ω11 = 120 (leading to a step size of 0.006). All other variance-

covariance parameters were kept constant. Along with the false-positive and false-negative detec-

tions, we obtained the Deviance values for each model. Then, we chose the best of the models

1-5 supported by the data according to the LRT model selection criterion and compared their

performance.

The false-positive and false-negative detections of each iteration are samples of a Bernoulli

distribution with an unknown rate parameter (the Type I and II error rates, respectively). To

visualize Type I error rate and power (1 - Type II error rate) as a function of the random-slope

standard deviation, we �tted generalized additive models (GAM, e.g., Hastie and Tibshirani, 1990;

Wood, 2006) to the false-positive and false-negative detection data using the binomial family to

describe the response distributions. This not only accurately models the response distribution of the

false-positive and false-negative detections, it also provides con�dence intervals for the estimated

Type I error rate and power.

Figure 1 shows Type I error rate and power (left and right column, respectively) as a function
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of the random-slope standard deviations (τ11, ω11) for the maximal model (Eq. 1) and the model

selected according to LRT.

The top row shows Type I error rate and power for the maximal model (Eq. 1). Its Type I

error rate appears to be substantially smaller than the expected α = 0.05 (horizontal solid line)

up to τ11 = ω11 ≈ 40. This indicates an over-conservative behavior of the maximal model in cases

where the random slope standard deviations are too small to support the complex random-e�ect

structure. On the interval [80, 120], the maximal model appears to be slightly anti-conservative

with respect to the expected α = 0.05. On that interval, however, the maximal model matches the

generating process.

Given that the maximal model is over-conservative even with respect to the expected α = 0.05

for small random slopes and, therefore, has reduced power, we expect that a parsimonious model

may provide better power in these cases by choosing a model that is supported by the data. For

example model (5) for small, model (1) for larger random slopes, and one of the models (2-4) in

between.

The bottom row in Figure 1 shows Type I error rate and power of the parsimonious model,

selected according to LRT, as a function of the random-slope standard deviation. Although the

Type I error rate appears to be larger than the expected α = 0.05, it is not substantially larger than

the maximal Type I error rate of the maximal model. At the same time, it provides substantially

better power on the interval [0, 40]. Thus, the LRT-based model selection approach yields an

advantage of statistical power over the maximal model while maintaining a comparable Type I

error rate.

Not everyone may consider the gain in power for this setting (shown in Fig. 1) as substantial

enough to justify the additional e�ort one has to put into model selection. However, the relative

power gain naturally increases when overall power decreases (e.g., when sample size is small).

Hence, we performed the same simulation with a reduced number of subjects (30 instead of 50) and

a reduced number of items (10 instead of 20). To this end we reduced the total sample size from

2000 to 600.

Figure 2 shows the Type I error rates and power for the maximal model (top panels) and the

model selected according to LRT (bottom panels) for a smaller sample size (Nsubj = 30, Nitem = 10).

Here the maximal model shows an anti-conservative behavior on the interval [0, 80]. Consequently, a

model selection approach using the LRT backward selection heuristic is able to provide a substantial
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gain in power over a larger interval [0, 90] while maintaining a Type I error rate comparable with

the maximal model. Moreover, the relative power gain is larger for this reduced sample size.

Figure 3 shows how the LRTmodel selection rate changes with increasing random-slope variances

(top panel: Nsubj = 50;Nitem = 20, bottom panel: Nsubj = 30;Nitem = 10). A similar pattern

is obtained for both sample sizes: The intercept-only model wins for small random-slope standard

deviations and is less frequently selected in favor of the more complex models with increasing

random-slope standard deviations; the maximal model gets selected almost exclusively for large

random e�ect slopes.

These model selection rates also explain the behavior seen in Figures 1 and 2: Small random

slopes are not supported by the data, even in the case of a larger sample size. For this case, a

parsimonious model yields the best description of the data and provides a power advantage over a

maximal model. As the random-slope standard deviations increase, a more complex model must

be chosen to describe the data adequately. Of cause, this happens earlier for larger sample sizes

compared to smaller sample sizes. Hence, a model selection approach using the LRT backward

selection heuristic provides a power bene�t compared to the maximal model.

In summary, the �rst simulation scenario (i.e., the simulation of the worst-case scenario) revealed

clear de�cits of the maximal model. In the second simulation scenario, even when the generating

process matched the maximal model, the maximal model performed worse than a parsimonious

model when variance components were not well supported by the data.

4. Discussion

The simulations yielded a clear set of results. First, in agreement with Barr et al. (2013) and

others before them, we showed that the maximal model is able to guard against an increased Type

I error rate by ignoring a signi�cant variance component. However, while the maximal model

indeed performs well as far as Type I error rates were concerned, power decreases substantially

with model complexity. We have shown that the maximal model may trade-o� power for some

conservatism beyond the nominal Type I error rate, even in cases where the maximal model matches

the generating process exactly. In fact, the best model is the one providing the largest power, while

maintaining the chosen nominal Type I error rate. If more conservatism with respect to the Type I

error rate is required, the signi�cance criterion α should be chosen to be more conservative, instead

of choosing a possibly over-conservative method with some unknown Type I error rate.
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As already stated by Stroup (2012, p. 185):

Neither the [maximal] nor the [minimal] linear mixed models are appropriate for most

repeated measures analysis. Using the [maximal] model is generally wasteful and costly

in terms of statistical power for testing hypotheses. On the other hand, the [minimal]

model fails to account for nontrivial correlation among repeated measurements. This

results in in�ated [T]ype I error rates when non-negligible correlation does in fact exist.

We can usually �nd middle ground, a covariance model that adequately accounts for

correlation but is more parsimonious than the [maximal] model. Doing so allows us full

control over [T]ype I error rates without needlessly sacri�cing power.

Our simulations have shown that determing a parsimonious model with a standard model selec-

tion criterion is a defensible choice to �nd this middle ground between Type I error rate and power

(see also Appendix). Such a model maintains a Type I error rate similar to the maximal model at a

better statistical power. Experimental designs, as currently employed in psycholinguistic research,

are likely to be compatible with parsimonious models. A survey of 15 studies on Chinese relative

clauses (Vasishth, Chen, Li and Guo, 2013) and of 26 of the studies reviewed by Engelmann, Jäger

and Vasishth (2015) showed that the number of subjects used in rating studies and reading studies

(self-paced reading and eyetracking) range from 16 to (in one case) 150 (Jäger, Engelmann and

Vasishth, 2015), and the number of items from 12 to 80; the smaller numbers of subjects and items

are far more common in psycholinguistics. For such typical sample sizes, it is not necessarily the

maximal, but more likely a model with a parsimonious random e�ect structure that will be most

suitable for describing the data of factorial experiments. For experiments with much larger sample

sizes, the situation could be di�erent.

There is a looming concern about using model selection in inferential statistics about �xed e�ects

in factorial experiments. Factorial experiments typically implement designs with a limited number

of balanced conditions. Usually, full-factorial ANOVAs are speci�ed providing test statistics for

all �xed e�ects, that is, all main e�ects and interactions. Rarely, main e�ects or interaction terms

are pooled with error terms because there is no a priori expectation for them to be signi�cant.

And almost never is model selection used to pool non-signi�cant main e�ects and interaction terms

because they are not signi�cant. Barr et al. (2013) refer to the �rst two cases as con�rmatory and

the last case as exploratory hypothesis testing. How do or should these options in�uence decisions
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about the choice of the random-e�ect structure of LMMs? Barr et al. (2013) provide a very nuanced

discussion of these issues and carefully delineate various alternatives, but in the end they come down

strongly in favor of their recommendation to keep it maximal, that is against model selection.2 In

line with our results, we want to make a strong case for model selection.

Barr et al. (2013) contrast con�rmatory (design-driven; i.e., the LMM is selected before the

analysis and does not depend on the data�unless there are convergence problems) and data-driven

hypothesis testing (i.e., the �nal LMM is selected taking into account whether model parameters

are supported by the data). If we assume that all within-subject or within-item �xed e�ects are

expected to be di�erent from zero, it is reasonable to assume that all variance components are

signi�cantly di�erent from zero as well, because it is unlikely that our experiments will detect

a natural constant in psycholinguistic experiments. From this perspective, the maximal model

looks like a coherent analysis strategy. This is only very rarely a realistic scenario, at least once

we go beyond two-factorial design; we simply don't see explicit expectations about pattern of

means relating to three-factor interactions. Con�rmatory hypothesis testing must pool terms that

are not expected to be signi�cant and their associated variance components with the residual

variance. Thus, strictly speaking, traditional ANOVA-based hypothesis testing is more often better

characterized as over�tting rather than con�rmatory. Barr et al. (2013) favor the maximal model

because they assume that removal of non-signi�cant terms might be the consequence not of a priori

selection of a model, but a post-hoc selection with an eye towards the signi�cance of p-values in

the �xed e�ects.

Our starting point is di�erent. We think a strictly con�rmatory hypothesis testing is simply

not a realistic scenario; Barr et al. (2013) do not provide one either. Especially, the strict linkage

of �xed-e�ect parameters and associated variance components deserve some special attention. We

go along with �tting all �xed e�ects of factoral experimental designs. Although it might be useful

to re-evaluate this strategy in perspective, this issue is beyond the current article. Importantly, as

is obvious by now, we argue that LMMs should be based on model selection. To be clear: The goal

of model selection is not to obtain a signi�cant p-value for a �xed e�ect; the goal is to identify the

most parsimonious model that can be assumed to have generated the data. This procedure can be

decided upon in advance and p-values associated with �xed e�ects are then a result of this a priori

2Unfortunately, the reception of this article has been much less nuanced than warranted by its content.
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determined procedure.

There are four arguments in favor of a model-selection strategy. First, as shown with the

simulations in this article, �xed-e�ect estimates do not depend on random-e�ects structure as long

as the factorial design is balanced (i.e., covariates are uncorrelated). Thus, the invariance of �xed-

e�ect estimates in balanced designs for varying random-e�ects structures is not a surprise; one may

just as well use ordinary least squares to estimate them. The random-e�ects structure may impact

the estimate of the standard errors associated with �xed e�ects and thereby at least sometimes (not

always) the decision about statistical inference. Matters get more complicated once one deals with

correlated covariates, non-factorial designs, substantial imbalance due to missing data, or auto-

correlated residuals (Baayen, Vasishth, Bates and Kliegl, 2015; Matuschek and Kliegl, 2015). Our

simulations showed that, in the long run, the parsimonious model yields the best chances to detect

a true �xed e�ect as signi�cant.

Second, while plausible, the assumption that the true value of all variance components is larger

than zero is actually not the critical test during model selection. Rather the question is for which

variance components this assumption is supported by the data. Fitting the maximal model incurs

substantial loss of statistical power if the true value of the variance component is small. Moreover,

such overparameterized LMMs often yield nonsensical estimates of correlation parameters (i.e.,

values of -1 or +1) that clutter journal pages and mislead readers.

Third, we strongly want to encourage a move beyond the interpretation of variance components

as mere nuisance parameters that need to be taken care of, for example, to avoid anti-conservative

estimates of �xed e�ects (e.g., Barr et al., 2013; Schielzeth and Forstmeier, 2009). They hold the

key for a joint consideration of experimental e�ects and associated individual or item di�erences

(González et al., 2014; Kliegl et al., 2011). For example, whether a correlation between mean reponse

time and an experimental e�ect is estimated as reliably positive or negative may have profound

consequences for a theoretical consideration. Also, a �xed e�ect may not be signi�cantly di�erent

from zero, but model selection may reveal reliable individual di�erences in this e�ect (Kliegl et al.,

2011). In this case, the signi�cant variance component points to qualitative di�erences in the

direction of e�ects (i.e., positive and negative for about 50% of the subjects, respectively).

Fourth, the distinction between design-driven and data-driven, as introduced by Barr et al.

(2013), misses an important con�rmatory aspect in multivariate statistics: Any hypothesis about the

support of variance components by the data requires a model comparison. For example, hypotheses
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about the random-e�ect structure (e.g., postulating a correlation parameter to be signi�cantly

di�erent from zero) are tested by model selection (i.e., an LRT of models with and without the

critical variance component). In multivariate statistics, LRTs are con�rmatory, but Barr et al.

(2013) call this analysis data-driven because selection of the parsimonious model depends on the

data. Finally and obviously, we agree with Barr et al. (2013) that model-selection strategies must

be carefully documented.

Having reached this conclusion, we face the discussion about suitable model selection criteria

(e.g., AIC, LRT, GCV) and e�cient schemes (e.g., forward, backward, full-scale cross validation),

like all other scienti�c �elds using multivariate statistics to guide the accumulation of knowledge

(e.g., Vandekerckhove et al., 2015). There are also some speci�c proposals for selection of parsi-

monious mixed models (e.g., Bates et al., 2015a). Actually, in contrast to many other �elds, much

psycholinguistic research enjoys two key advantages. First, it is usually not di�cult to design exper-

iments with su�cient statistical power; that is, to plan a priori for a larger number of subjects and

number of items (although in some cases it can be more di�cult to increase items than subjects).

Aiming for high power is important for independent reasons, because even a statistically signi�cant

result obtained with a low-power experiment could easily have the wrong sign or an exaggerated

e�ect size (Gelman and Carlin, 2014; Colquhoun, 2014). Second, it is not too di�cult to repeat an

experiment with new samples of subjects and items to validate the results of the best model found

on the basis of the data of the �rst experiment. These are de�nitely viable and reliable steps to

determine the best random-e�ects structure for the data of a speci�c design.

Finally, we want to emphasize that we are not proposing a dogmatic alternative to the �keep

it maximal� proposal of Barr et al. (2013), in the sense that now everyone must engage in model

selection. There is certainly room for argument about di�erent approaches here, as there is in

all of statistical practice. In order to achieve maximum transparency in the analysis, we propose

that all data and code should be released with the publication of a paper, so that readers can

revisit the analysis and investigate the robustness of claimed e�ects. This allows for checks of,

for example, whether the exclusion of a random e�ect was justi�ed or a maximal model should

have been speci�ed. Even if the maximal model converges, researchers may have valid reasons for

determining a parsimonious model, especially if they want to use all of the statistical power their

research program a�ords in the long run.
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Figure 1: Comparison of Type I error rate (left panels) and power (right panels) for the maximal model (top panels)

and the model selected according to LRT backward selection heuristic (bottom panels). The nominal Type I error

rate (α = 0.05) is shown as a horizontal line in the left panels; the maximum Type I error rate of the maximal model

is shown as a dotted line in the top left panel. The dotted line in the bottom right panel reproduces the power of

the maximal model shown in the top right panel.
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Figure 2: Comparison of the Type I error rate (left panels) and power for the maximal model (top panels) and

the model selected according to LRT backward selection heuristic (bottom panels) for a smaller sample size. The

nominal Type I error rate (α = 0.05) is shown as a horizontal line in the left panels; the maximum Type I error rate

of the maximal model is reproduced as a dotted line in the top left panel. The dotted line in the bottom right panel

reproduces the power of the maximal model shown in the top right panel.
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Figure 3: Comparison of the model selection rates by the LRT backward selection heuristic for a large (Nsubj =

50;Nitem = 20, top panel) and a smaller sample size (Nsubj = 30;Nitem = 10, bottom panel), as a function of the

random-slope standard deviation for the maximum model (solid line), a reduced model (Eqs. 2-4, dashed line) and

the random-intercept only model (dotted line).
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Figure 4: Comparison of the Type I error rate (left panels) and power for the maximal model (bottom panels) and

the model selected according to AIC (bottom panels). The nominal Type I error rate (α = 0.05) is shown as a

horizontal line in the left panels; the maximum Type I error rate of the maximal model is reproduced as a dotted

line in the top left panel. The dotted line in the bottom right panel reproduces the power of the maximal model

shown in the top right panel.
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Figure 5: Comparison of the Type I error rate (left panels) and power for the maximal model (top panels) and the

model selected according to AIC (bottom panels) for a small sample size. The nominal Type I error rate (α = 0.05)

is shown as a horizontal line in the left panels; the maximum Type I error rate of the maximal model is reproduced

as a dotted line in the top left panel. The dotted line in the bottom right panel reproduces the power of the maximal

model shown in the top right panel.
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Appendix: Model selection using the AIC

Throughout the main article, we employed the LRT backward heuristic as the model selection

criterion. Another popular means of model selection is the Akaike information criterion (AIC;

Akaike, 1998). In contrast to the LRT, the AIC allows for the comparison of several models at

once, while the former only compares two models with each other. The simultaneous comparison

of several models avoids the need to choose a heuristic for a sequential, pair-wise model selection.

Within this appendix, we present the results (Type I error rates and power) of our simulations

using the AIC as the model selection criterion instead of the LRT.

Figure 4 shows the Type I error rate (left column) and power (right column) of the maximal

model (top row, identical to the top row of Figure 1) and the model selected by the AIC (bottom

row) for a larger sample size (i.e., Nsub = 50, Nitem = 20). Like the LRT, the AIC provides a

clear power bene�t over the maximal model while maintaining a comparable Type I error rate

(compare Fig. 1). For a smaller sample size (i.e., Nsub = 30, Nitem = 10, Fig. 5), however, the

model selected by the AIC might be considered as too anti-conservative with respect to the Type

I error rate, although a de�nite statement is not possible as the exact Type I error rate of the test

is unknown.

The di�erence between the two model selection approaches for the smaller sample size (compare

Fig. 2 and 5) is explained by the larger weight on the goodness-of-�t of the LRT with αLRT = 0.2

compared to the AIC. The backward selection scheme prevents one from choosing a simpler model

if only a small amount of evidence is provided by the data in favor of it. Meaning, the scheme stays

with the more complex model if the selection criterion is inde�nite, particularly in cases of small

samples sizes.

In general, model selection tries to balance the goodness-of-�t of a model with its risk for

over�tting the data. Therefore, the decision about which model is the most appropriate one for a

given data set depends strongly on the amount of evidence provided by the data. Simply taking

the best according to the model selection criterion in cases of very small data sets bears the risk of

choosing the wrong model. To this end, model selection gets increasingly di�cult with decreasing

samples sizes while allowing for an increased gain in (relative) power.

In summary, for small sample sizes, the model selected by the AIC appears to be slightly anti-

conservative even with respect to the maximum Type I error rate of the maximal model. The more

conservative LRT with backward-selection heuristic, however, still maintains a Type I error rate
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near the one of the maximum model, while providing a substantial bene�t in power compared to

the maximal model (compare Figs. 2, 5).
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