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Analysing Large Datasets of Eye Movements During Reading  

Most of the time visual word recognition occurs in the context of reading. Eye movements and 

fixations provide necessary perceptual and language-related information; prior knowledge and 

sentence context guide our expectations about this input. Obviously, not only the process of word 

recognition during reading, but also research on this topic is a highly complex undertaking. One very 

successful approach to deal with this complexity has been to study the recognition of isolated words, 

often measured in recognition times. Typically, subjects and words are assigned to each other in some 

form of a (counter-)balanced design. The ensemble of chapters in this volume summarizes the state of 

the art. 

In this chapter, we take an alternative starting point: fixation durations during continuous 

reading of sentences. We review research based on an analysis of a large corpus of fixation durations 

which allows the simultaneous consideration of a large number of influences. Such corpus-based 

reading research departs strongly from the priniciples of orthogonal experimental design, which is the 

aim of research that draws inferences from measurements of one to three target words (see, e.g.,  

Schotter and Rayner, this volume). In the following two sections, we describe conceptual and 

statistical frameworks for the analyses of eye movements that use fixations on (almost) all words. 

Within these frameworks, we build on earlier reports about the „big three“ word factors influencing 

fixation durations (type frequency, predictability from prior sentence context, and word length). We 

carry out these analyses from a perspective of distributed processing, taking into consideration not 

only the properties of the fixated word, but also those of its left and right neighbors (Kliegl, 

Nuthmann, & Engbert, 2006; Kliegl, 2007). We expand the previous research by including not only 

the properties of the word triplet but those of the word quintet centered at the fixated word.  

A Conceptual Framework for the Analyses of Fixation Durations in Reading 

Visual word recognition occurs in the context of reading involving eye movements and 

fixations in the service of providing the necessary perceptual and language-related information. We 

distinguish roughly three types of effects: (1) Effects that arise from the oculomotor process and low-

level processes of eye guidance leading to effects related to preferred viewing locations or launch 

sites. (2) Effects that arise from language-related processes. Many of the over 50 linguistic properties 
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of words contributing to processing efficiency in isolated word recognition have also been established 

for fixation durations or probabilities in normal reading. In addition, during reading of sentences, 

fixation durations and probabilities are influenced by variables coding the context of words, such as 

the predictability of words from prior words of the sentence or corpus-based statistics such as 

transition probabilities or context diversity. (3) Finally, corpus analyses have provided reliable 

evidence that some indicators of language-related processes exert their effects during at least three 

successive fixations. 

A three-dimensional taxonomy of fixations 

The ocular dynamics of reading can be cast along three dimensions, comprising the number of 

fixations on a word, the direction of saccades bordering these fixations, and the duration of fixations. 

In Figure 1, we display fixation patterns for three successive fixations defined by the first two of these 

three dimensions (see Hogaboam, 1982, for an earlier taxonomy). The columns depict single, first, or 

second of two fixations. This covers almost all fixations, because very few words host more than two 

fixations during reading. The rows differentiate between eight different patterns of foward and 

backward movements. The figure panels inform about the absolute number and percentages of the 

corresponding fixations. The most frequent event are single fixations preceded and followed by a 

forward saccade (32%) and fixations preceding a forward skipping (12%). Regressions out of and into 

words (9% and 8% respectively) are much more common than regressions within words (2%). 

Single fixations account for more than half (57%) of all fixation patterns, whereas the second 

and third column add up to just about 20%. Single fixations entering the analyses in the next section 

represent a subset from 125 515  single fixations in the highlighted panels of Figure 1.1 Note, that the 

panels in Figure 1 do not distinguish between first and second pass reading (see below). Analyses on 

gaze durations (the sum of all fixations on a word prior to movement to another word) actually include 

more single-fixation than double-fixation cases, even if we include cases with three or more fixations 

(Rayner, 1998). 

-- Insert  Figure 1 about here -- 

                                                        
1 The main analysis reported in this chapter includes a total of 80,625 firstpass single-fixation durations, 

with durations ranging from 18 to 1.372 ms. Only 139 fixations were shorter than 50 ms and only 66 were longer 
than 750 ms—two typical lower and upper bounds used in other research, but an analyses of model residuals 
strongly suggested keeping all fixations. 
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The statistics in Figure 1 are based on 223.099 fixations, however 11.127 fixations (5%) fell 

into different fixation patterns (mostly three or more fixations on one word) leaving 211.972 

fixations.2 They were recorded from 273 subjects reading 144 sentences of the first Potsdam Sentence 

Corpus (PSC I, Kliegl, Grabner, Rolfs, & Engbert, 2004). Sentences with blinks or any loss of 

measurement were deleted, leaving 90% of the sentences for the analyses. Obviously, the presumably 

random loss of sentences varied across subjects, leaving 42 to 144 sentences across subjects. 

Conversely, sentences randomly differ in how many subjects contributed fixations, ranging from 229 

to 257 subjects. Therefore, from the outset of analyses, the initial crossing of subject and sentence 

factors is lost; the design ends up being highly imbalanced. 

Since we include (almost) all words (i.e., not only selected target words) into the analyses, we 

must also distinguish between variance that is due to differences between sentences and variance that 

is due to differences between words. Obviously, words are not crossed with sentences, but only 

partially crossed at best. Fortunately, statistical programs which estimate the variance components of 

such sparse designs in linear mixed models (LMMs) for continuous dependent variables (such as 

fixation durations) or  generalized linear mixed models (GLMMs) for binary dependent variables (e.g., 

skipping vs. fixating a word) have become available during recent years. We use Bates and Maechler’s 

(2010) lme4 package in the R environment for statistical computing and graphics (R Development 

Core Team, 2010) for our analyses. 

A descriptive statistical model for single-fixation durations 

At the level of the eyes, reading consists of an alternating sequence of fixations and saccades 

with information uptake during fixations. Most saccades are forward saccades to the next word (50%), 

but in about 25% of the cases the next word is skipped. For the remainder of this chapter, we focus on 

durations of fixations that were the only fixation during firstpass reading, that is fixations which were 

preceded by a saccade from a previous word and followed by a saccade to a subsequent word that had 

not been fixated or skipped before. Such a fixation is called a single fixation duration (SFD; see Figure 

1, first column; Figure 2, top part). This definition covers rougly 50% of all fixations during leisurely 

reading for comprehension (see Figure 1, also e.g., Kliegl et al., 2006). 
                                                        
2 70.892 fixations on first and last words as well as 67 fixations below 15 or above 1500 milliseconds 

were deleted beforehand. This leads to different percentages of first and second fixations in two fixation cases. 
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-- Insert  Figure 2 about here -- 

Immediate lexical effects. Past research has shown that fixation durations and skipping are 

influenced by word frequency, word length and predictability (Rayner & McConckie, 1976; Kliegl et 

al.,  2004; Brysbaert, Drieghe, & Vitu, 2005). Assuming immediacy of processing, properties of the 

fixated word are the primary determinants of fixation and gaze durations (Just and Carpenter, 1980). 

Together with the dominant role of frequency in psycholinguistic research, word length and a word’s 

predictability from prior context occupy prominent roles in reading research (Rayner, 2009; see 

Rayner, 1998 for a review). Frequency, predictablity, and the inverse of length3 correlate negatively 

with fixation duration and refixation probability and positively with skipping probability (Kliegl et al., 

2004). Besides frequency, length, and predictability, a wide range of linguistic variables influencing 

lexical word identification have been distinguished by means of enhanced computational methods and 

large, easily accessible digital resources. Graf, Nagler and Jacobs (2005) identified effects of 57 

linguistic word properties contributing to processing efficiency in isolated word recognition. 

Influences of lexical variables derived from surface frequency like lemma (Brysbaert & New, 2009; 

Beauvillain, 1996), rank (Murray and Forster, 2004), and document frequency (e.g. contextual 

diversity, see Adelman, Brown, & Quesada, 2006) have been shown to influence reaction times in 

naming and lexical decision tasks. 

Fovea and parafovea. In reading we pick up information from more than just the currently 

fixated word. Word N-1, word N+1, and possibly also word N+2 fall into the so-called parafoveal 

region extending from the foveal region to about 5 degrees on either side of fixation. Starting with 

McConkie and Rayner (1975), numerous experiments have shown that parafoveal visual properties 

covering the area from 4 characters to the left to a maximum of 15 characters to the right of the current 

fixation location influence fixation durations. Consequently, during reading of sentences, fixation 

durations and probabilities depend also on variables coding the context of words, such as the 

predictability or plausibility of words from prior words of the sentence or corpus-based statistics such 

as transition probabilities and surprisal measures (cf. Boston, Hale, Kliegl, Patil, & Vasishth, 2008). In 

                                                        
3 We typically use the reciprocal of word length to counteract the positive skew of the word-length 

distribution in German. Using the reciprocal of word length, renders the multiplicative interaction of frequency 
and length or predictability and length as a ratio or relative frequency and predictability measure (i.e., 
normalized on word length). 
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Figure 2, we list type frequency, predictability (given prior words of the sentence) and length for the 

fixated word N and for words N-2, N-1, N+1, and N+2. These independent variables are included as 

grand-mean centered continuous measures (covariates) in our analyses. In keeping with prior 

specifications, frequencies are log-transformed, predictabilities are logit-transformed, and word 

lengths are entered with their reciprocal values (Kliegl et al., 2004, 2006).  

Lag effects. Analyses based on a large set of eye movements (e.g., Kliegl et al., 2006) have 

shown reliable influences of frequency, length, and predictability of word N-1 on fixations measured 

on word N. Word N-1 usually falls outside the foveal region comprising 2 degrees in the centre of 

vision (i.e., about 5 letters, presuming a distance to the monitor of 60 cm). There are (at least) two 

possible explanations for the influence of properties of word N-1. First, prolonged fixation durations 

on word N may reflect incomplete processing of word N-1. This spillover or lag effect is reflected in 

longer fixation durations after long, low frequent, or unpredictable words. A second explanation 

follows from the foveal load hypothesis (Henderson and Ferreira, 1990) to word N-1: Longer fixations 

occur on word N after difficult (e.g., low frequency) words N-1 because the difficulty of word N-1 

causes a narrowing of the attentional span which in turn reduced parafoveal preprocessing of word N. 

The interaction of frequency of word N-1 and N is in agreement with this view: The frequency effect 

on word N is more pronounced if word N-1 is a low frequency word (Kliegl et al., 2006; Rayner & 

Duffy, 1986). 

Influences from upcoming words. In reading we pick up information from more than just the 

currently fixated word. Words N+1 and, depending on the length of word N+1, possibly also word 

N+2 fall into the parafoveal region extending from the foveal region to about 5 degrees in reading 

direction. Gaze-contingent masking of parafoveal text increases fixation durations (McConkie & 

Rayner, 1975; Rayner, 1975). Thus, efficient reading requires parafoveal preview of the upcoming 

words (e.g., Balota, Pollatsek, & Rayner, 1985; Binder, Pollatsek, & Rayner, 1999; McConkie & 

Rayner, 1975; Rayner, 1975; Rayner & Bertera, 1979; Underwood & McConkie, 1985). Which 

properties of upcoming words are extracted during preview is an active area of current research. 

Lexical effects of upcoming words on the currently fixated words are still controversial. In their 

corpus analyses, Kliegl et al. (2006) found an effect of word frequency and predictability of the word 
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N+1 on fixations on word N. There was also an interaction of frequency of word N+1 and length of 

word N with a reliable N+1-frequency effect only after short words N, replicating Kennedy and Pynte 

(2005). Kennedy and Pynte also reported that for long words N, the parafoveal effect was limited to 

the initial trigram informativeness of word N+1, defined as the number of words sharing its initial 

three letters. Interestingly, whereas the N+1-frequency effect is always in the canonical direction with 

high-frequency words N+1 leading to short fixations, high-predictability words N+1 prolong fixations 

on word N (despite a positive correlation of frequency and predictability or words). Kliegl et al. 

(2006) explain this with memory retrieval of the upcoming word with prior sentence context as 

retrieval cue. In a corpus analyses by Pynte & Kennedy (2006) the parafoveal frequency effect also 

appeared, but White (2008) reported no effect of parafoveal frequency with control for orthographic 

familiarity. We emphasize again that the N+1-frequency effect has been questioned and only Kennedy 

and Pynte (2005; also Pynte & Kennedy, 2006 and Kliegl et al., 2006) found an effect (but see Inhoff, 

Radach, Starr, & Greenberg, 2000; Kennedy, Pynte, & Ducrot, 2002; Rayner, White, Kambe, Miller, 

& Liversedge, 2003; Rayner & Juhasz, 2004). In contrast, effects of sublexical effects of orthographic 

familiarity of word N+1 are well established (Pynte, Kennedy, & Ducrot, 2004; Starr & Inhoff, 2004; 

Underwood, Binns, & Walker, 2000; but see Rayner, Juhasz, & Brown, 2007; White & Liversedge, 

2004).  

Polynomial trends. Some of the ambiguity of corpus-analytic results, such as those just 

described for N+1-frequency effects, may be due to nonlinearities underlying the relation between 

SFD and lexical predictors in multiple regression. In Figure 3, we illustrate the non-monotonicity of 

the function relating SFDs onf word N to the log of the frequencies of word N (middle), word N-1 

(left), and word N+1 (right). The top row is based on the fixations of 273 readers of the first PSC (144 

sentences); the bottom row is based on 144 different sentences of the second PSC (159 readers). The 

similarities of the profiles across different readers and different sentences suggests that the different 

non-linearities associated with the three different frequencies are reliable. Obviously, an explanation 

of such statistically reliable non-linear profiles represents the most formidable challenge for 

theoretical accounts of eye-movement control during reading, ideally validated with simulations in 

computational models.  
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-- Insert  Figure 3 about here -- 

Skipping. Starr and Rayner (2001) list word skipping as one of the major areas of research in 

reading besides regressions and the question of distributed processing and processing of upcoming 

words. In experimental designs word length accounts for most of the variance in skipping 

probabilities. As the length of a word increases, the probability that it will be skipped decreases 

(Brysbaert, Drieghe, & Vitu, 2005; Rayner & McConkie, 1976; Rayner, Sereno, & Raney, 1996). In 

their meta-analysis Brysbaert and Vitu (1998), conclude that about 1/4 of the variance in skipping 

probabilities is determined by word length. Thus, 3 letter words are skipped about 67% of the time, 

whereas 7-8 letter words are skipped only about 20% of the time; Krügel and Engbert (2010) estimate 

that about 90% of two-character words would be skipped if fixation locations are corrected for 

mislocated fixations. While there is agreement on the fact that word length influences skipping 

probability, it remains controversial to which extent lexical and sub-lexical properties of the skipped 

word influence the fixation duration prior to a skipped word. In Pynte and Kennedy (2006) skipping 

probability increases for high-frequency words and words with an informative beginning (see also 

White, 2008). In their first experiment Pynte, Kennedy, and Ducrot (2004) revealed decreased 

skipping probabilities before words with misspelled first letters. In their second and third experiments, 

misspellings induced shorter first fixation and gaze durations on word N-1 and there was no longer an 

effect on skipping probability. Similar to word frequency, words are also skipped more often if they 

are highly predictable (Ehrlich & Rayner, 1981; Brysbaert, & Vitu, 1998;  Kliegl et al., 2004; 

McConkie, et al., 1994; Rayner, Ashby, Pollatsek, & Reichle, 2004; Rayner & Well, 1996; Vitu, 

O’Regan, Inhoff, & Topolski, 1995). Kliegl and Engbert (2005) also examined the influence of 

skippings on prior fixation durations. They find that single fixation durations before skippings vary 

with the length and frequency of the to be skipped word. Fixations before skipped words are shorter 

before short or high-frequency words and longer before long or low-frequency words in comparison 

with control fixations.  

Oculomotor variables. SFDs also depend on oculomotor factors. We include (a) skipping of 

word N-1 or skipping of word N+1 (no-skip coded with „0“, skipping coded with „1“), (b) launch site 

(i.e., the letter distance between the last fixation location and the beginning of the fixated word) and 
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outgoing saccade amplitudes, and (c) the relative position of the fixation in the word (using a quadratic 

term) in our model. Of course, as reviewed for skipping in the last paragraph, these variables also 

reflect the effects of lexical processing (e.g., skipping of three-letter determiners is more frequent than 

skipping of three-letter verbs, O’Reagan, 1979). Here we examine them not as dependent, but as 

independent variables of SFDs. In this context, oculomotor processes may not be of primary concern 

for word recognition per se. For example, there is no reliable effect of word frequency on landing 

positions (Rayner, Binder Ashby & Pollatsek, 2001). Including oculomotor variables in a regression 

model statistically removes the influence of low-level factors on SFDs from the residual error. This 

should increase our chances of detecting theoeretically small effects related to lexical processing. For 

example, given the rapid decline of visual acuity relative to the fixation position, effects of lexical 

processing of parafoveal words are expected to be small. If they can be established reliably, these 

effects are of much relevance for constraining not only models of eye-movement control during 

reading, but also models of visual word recognition.  

 Oculomotor influences: launch site and landing site. SFDs are influenced by two oculomotor 

factors, namely saccadic amplitude and landing site. Several experiments have demostrated the 

importance of parafoveal word properties by masking words outside the fovea (parafoveal masking) 

increasing subsequent fixation durations (e.g., Balota, Pollatsek, & Rayner, 1985; Binder, et al., 1999; 

McConkie & Rayner, 1975; Rayner, 1975; Rayner & Bertera, 1979; Underwood & McConkie, 1985). 

The further away, that is the longer an incoming saccade, the less preview is possible due to the drop-

off in visual acuity and associated lateral inhibitions. Thus, the larger the amplitude of the incoming 

saccade, the longer the subsequent fixations on word N (Radach and Heller, 2000; Vitu et al., 2001; 

see also Heller & Müller, 1983; Pollatsek, Rayner, & Balota, 1986). In the same way, long words N-1 

lead to less preview and, consequently, longer fixation durations on word N (Kliegl et al., 2006). 

Consequently, fixations after skippings are longer. Fixation duration also depends on the landing 

position within a word. The effect that fixation durations in the middle of words are longer than those 

at the edges has been called the inverted optimal viewing position effect (IOVP) (Vitu, McConkie, 

Kerr, & O’Regan, 2001; McConkie, Kerr, Reddix, Zola, & Jacobs, 1989). Nuthmann, Engbert, & 
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Kliegl (2005) argue that this effect is due to mislocated fixations and the immediate triggering of a 

new saccade program (see also Nuthmann, Engbert, & Kliegl, 2007). 

Interactions. There are very strong interactions between lexical and oculomotor variables. Most 

importantly, the effect of lexical factors on SFDs depends strongly on whether word N-1 or word N+1 

was skipped (e.g., Kliegl & Engbert, 2005; Kliegl, 2007). Below we will report analyses on such 

interactions and discuss their implications. Past research also established a number of reliable 

interactions among the lexical variables (e.g., Kennedy and Pynte, 2005; Kliegl et al., 2006). From this 

research we keep the following previously significant interactions in the model: (a) frequency of word 

N with frequency of word N-1, (b) frequency of word N with length of word N, (c) length of word N 

with frequency of word N+1, and (d) length of word N with predicability of word N+1.  

Figure 2 represents the framework for possible influences on SFDs for the present analysis. As 

indicated by the ellipses, the framework may be expanded with other variables as their influence is 

established; this is not a closed set. Clearly, we are looking at a large number of variables 

simultaneously and this requires a defensible perspective for statistical inferences. We propose to 

analyze the relation of SFDs to the oculomotor and lexical variables with LMMs, covering at least the 

fixated word and its two left and right neighbors respectively and a selection of interactions between 

them. In the next section we review the key components of LMMs and how they relate to SFDs during 

reading.  

A Linear Mixed Model of Single Fixation Durations during Reading 

We report LMM results for the statistical model of SFDs represented in Figure 2, focussing on 

the largest effects. The complete output of the lmer function (Bates & Maechler, 2010) is provided in 

Appendix A. Data and R scripts will be made available at a project website (http://www.dlexDB.de or 

http://read.psych.uni-potsdam.de/pmr2/) and enable not only the replication of the present model, but 

also the pursuit of alternatives.  

Synopsis of methodological advantages of LMM 

LMMs are rapidly gaining acceptance in psycholinguistic experimental research (e.g., Baayen, 

Davidson, & Bates, 2008; Kliegl, Masson, & Richter, 2010). Baayen (2008), Faraway (2007), and 

Gelman and Hill (2007) contain chapters which offer a general introduction to LMMs with an applied 
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perspective. We suspect that LMMs are likely to replace traditional analyses of variance for inferential 

statistics. Three advantages of LMMs are of special relevance for the present purpose. 

First, they suffer from much less loss in statistical power incurred by an imbalance in the 

number of observations than, for example, repeated-measures ANOVA (e.g., Quené & van den Bergh, 

2008, for simulations). In eye-movement research, we have no control over whether a word is skipped 

or fixated once or several times; we also have to accept blinks and loss of measurement during the 

experiment. Thus, any experimental design, nicely counterbalanced at the outset, will end up highly 

unbalanced after about two seconds of measurement. 

Second, traditionally experiments are specified as factorial designs; continuous lexical 

indicators such as printed frequency are often forced into discrete categories of, e.g., low and high 

frequency. Alternatively, continuous predictors (such as log printed frequency) have been used in 

multiple regression analysis (MRA), but the clustering of fixations by subjects requires separate 

MRAs for each subject (i.e., repeated-measures MRA; Kliegl et al., 2006; Lorch & Myers, 1990), 

limiting the number of predictors in a model by the number of fixations measured per subject. LMMs 

overcome this distinction between ANOVA and MRA analyses. Effects of factors and covariates can 

be specified along with variances of these effects associated with random factors of subjects, 

sentences, and words. 

Third, in psycholinguistic research we typically distinguish two random factors: subjects and 

items (sentences or words). The (presumably) random selection of subjects and items affords 

generalizability for these dimensions. As we want to generalize across subjects and items, we are 

usually not interested in how much a certain subject’s, say, average fixation duration departs from the 

overall mean; neither are we interested in average fixation durations of individual items. What we do 

need to know for test-statistics, however, are the variances of subjects’ and items’ average fixation 

durations. Therefore, psycholinguistic experiments report two ANOVAs, one using subjects (F1 

ANOVA) and one using items (F2 ANOVA) as random factors. LMMs, covering both random factors, 

are to be preferred for obvious reasons, such as the avoidance of ambiguities relating to significant F1 

and F2 effects. More importantly, simultaneous estimates of fixed effects (i.e., effects analogous to 

unstandardized regression coefficients in multiple regression) and of between-subject, between-
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sentence, and between-word variance components (and correlation parameters) yield not only 

appropriate inferential test statistics for fixed effects, but offer additional insights in the dynamics of 

reading. In the next three sections we elaborate on this distinction between model parameters of the 

design matrix (fixed effect estimates), random factors, and parameters specifying variance components 

and correlation parameters associated with (some of) the fixed effects. 

Fixed effects 

In the last section, we introduced the lexical, visual, and oculomotor independent variables 

(including also polynomial trends and interactions among them) which are known to affect SFDs.  

These effects are represented in the unstandardized regression coefficients of a multiple regression 

model. Adding also the intercept (i.e., an estimate of the mean log SFD), we count a total of 44 fixed-

effects parameters. While such a large number of parameters may appear to be daunting, especially 

after adding 12 parameters (plus 1 for the residual) for variance components (see below), their 

estimation is feasible, given that the analysis will be based on 80,625 SFDs (i.e., ~ 1414 observations 

per parameter). Fixed effects will be presented in detail further below. We describe results for SFDs 

measured in the right eye. 

Random factors 

For a rather simple reason we cannot analyze SFDs with a standard MRA: SFDs are not 

independent observations, but they are clustered according to three factors: subjects, sentences, and 

words.  

Subjects. In psychological research, subjects are considered to be drawn at random from an 

underlying population. In our study, SFDs were measured in 273 readers who varied widely in age, 

size of vocabulary, and cognitive ability. On average a reader contributed 295 fixations with a range 

from 78 to 444 fixations. If we proceed from the reasonable assumption that at least five observations 

should be available per parameter, the minimum number of observatons given our fixed-effect 

regression model with 44 parameters is 1.8 = 78/44. Forty subjects had less than 220 fixations, that is 

less than five observations per parameter of the 44 fixed-effect model. Thus, we could hardly specify a 

repeated-measures MRA for a model with 44 predictors. LMMs take care of this problem by 

„borrowing strength“ from the estimates of population values. Individual differences in SFDs are 
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reliable. Consequently, the fixations measured in a person are more similar to each other than those 

between these different persons. LMM take this intra-class correlation into account.  

Sentences. The sentences constructed for the original Potsdam Sentence Corpus (PSC I; Kliegl, 

et al., 2004) are also a presumably random sample from the population of sentences one may 

encounter in simple prose. The sentences did not provide particular difficulty for comprehension, but 

they varied widely in syntactic structure and semantic content. Consequently, the SFDs measured on a 

given sentence are more similar to each other than fixations measured on different sentences. LMMs 

also take into account the intra-class correlation associated with sentences. As each subject read the 

same 144 sentences of the PSC I, sentences are specified as crossed with subjects. Of course, given 

loss of measurement, this crossing is highly imbalanced.  

Words. We also assume that the words selected to compose the sentences are a random sample 

from the population of words. When we restrict the analyses to SFDs as described in Figure 2, 

sentences are composed from 369 different words; many words occur in more than one sentence (i.e., 

determiners, conjunctions, and prepositions), whereas others appear only once. Of course, frequently 

occuring words are typically also short and, consequently, they are skipped very often. In contrast, 

words that occur once are typically longer and skipped less frequently. Therefore, the repetition across 

sentences partially compensates the high skipping rate. Aggregating across subjects and sentences, we 

have sufficient information for the LMM to take into account the intra-class correlation of words.  

Variance components 

LMMs „remove“ the dependencies between observations that are due to the clustering of SFDs 

„belonging“ to a subject, a sentence, or a word. They do this on the assumption of independence 

between the three random factors and on the assumption that the deviations of the „levels“ of these 

factors from the fixed effect are normally distributed.  

Varying intercepts. The main difference and advantage of LMM over traditional ANOVAs 

relates to estimates of parameters specifying the variance components associated with random factors. 

For the analysis of reading eye movements, we specify three random factors: subjects, sentences, and 

words.  We assume that subjects yield a normal distribution of mean SFDs (actually, the log-transform 

of them). The mean of this distribution is returned as a fixed effect (see Appendix A, block of fixed 
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effects: (Intercept) = 5.25). The variance of the between-subject SFD distribution is estimated as a first 

variance component (see Appendix A, block of random effects, subjects (Intercept)). Specifically, the 

square root of this variance, the standard deviation for between-subject differences of mean log SFD, 

is 0.152 for the present data. Similarly, we assume that sentences and words yield normal distributions 

of SFDs distributed around the same intercept. The variances of these two between-sentence SFD 

distributions are estimated as a second and third variance component.  The square roots of these 

variances are listed with a value of 0.055 for sentences (see Appendix A, top block, sentences 

(Intercept)) and with a value of 0.094 for words (see Appendix A, top block, words (Intercept)). Thus, 

the SFD variance for subjects is larger than the SFD variance for words which is larger than the SDF 

variance for sentences. These three estimates represent independently varying intercepts for subjects, 

sentences, and words: An increase of the variance between subjects (e.g., by sampling from a broad 

range of reading ability) may leave the SFD variances of sentences and of words unchanged; an 

increase of the variance between sentences (e.g., by including sentences of particularily great syntactic 

difficulty—e.g., multiple embedding of relative clauses) could be independent of the SFD variance 

between subjects and the SFD variance between words.  

Varying slopes. We estimate a second group of variance components that relates to within-

subject effects of three frequency effects linked to words N-1, N, and N+1. Overall, the linear trends 

are three slopes that are returned as three fixed effects (i.e., N-freq linear = 0.039, N-1freq linear = -

0.041, N+1 = -0.019; see Appendix A, block of fixed effects). The LMM allows us to test the 

hypothesis that there are reliable differences between subjects in how strongly their SFDs respond to 

the difference between low- and high-frequency words on the assumption that these slopes are 

normally distributed around the overall fixed effect. The between-subject variances of these three 

frequency effects yield three additional variance components estimated as LMM parameters. They are 

given in the random-effects block of Appendix A as N-1-freq (linear), N-freq (linear), and N+1-

freq(linear); the standard deviations are 0.00044, 0.00085, and 0.00020, respectively. 

Covariances between varying intercepts and varying effects (correlation parameters). So far, 

we have introduced the concept of varying intercepts and varying slopes. These are variance 

component parameters. In LMM, we can also estimate the associated covariances (or correlation 
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parameters) if there are two or more components for a random factor. In the present model, this is the 

case for subjects. These correlation parameters tell us, for example, whether subjects with short 

average fixation durations tend to have strong or weak word-N frequency effects or whether there is a 

correlation between N+1-frequency, N-frequency, and N-1 frequency effects across subjects (Risse, 

Engbert, & Kliegl, 2008). These correlation parameters are listed in the random-effects block of 

Appendix A. Kliegl, Risse, & Engbert (2008) proposed that the two negative correlation parameters 

between N-frequency effects with N-1-frequency and N+1-frequency effects (i.e., -0.33 and -0.45, 

respectively) together with the positive correlation parameters between the latter two effects (i.e., 

0.20) are consistent with an assumption of individual differences in perceptual span. Four variance 

components (1 intercept + 3 slopes) yield 6 model parameters to reconstruct the subject-related 

correlation parameters. Thus, there is a total of 12 model variance/correlation parameters (i.e., 4 

variances + 6 correlation parameters for subjects + 1 variance for sentences + 1 variance for words). 

Finally, the model also returns a parameter for the estimate of the residual variance, 0.27 for the 

standard deviation in the present data (see random-effects block of Appendix A). 

Random effects. The deviations of subjects, sentences, and words from the intercept and 

subjects’ deviations of frequency effects from the corresponding six effects are the random effects in 

the LMM, but, we iterate, they are not the model parameters. The distributions of the random effects 

can be described as unconditional distributions and as conditional distributions. The model parameters 

afford a description of the model in terms of the unconditional distribution. The actual random effects 

are from the conditional distribution, given the data and the values of the model parameters. In our 

LMM example, there are only 12 model parameters denoting variance components and associated 

correlation parameters, but 1605 random effects (i.e., 273 for subjects + 144 for sentences + 369 for 

words = 786 intercept deviations; 273 subjects x 3 different types of slopes = 819 slope deviations). 

The model parameters are the variances of the various regression coefficients associated with each of 

these factors (and possibly also their correlations). Consequently, adding data from new subjects to a 

data base does not change the number of model parameters to be estimated; we are still estimating the 

same number of fixed effects and parameters for variance components. Of course, the increase in 

number of observations due to SFDs of additional subjects increases the precision of the parameters 
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for the variance components. In contrast, adding a subject in a repeated MRA requires that all 

regression coefficients are estimated for this person. Thus, in an LMM, adding data from additional 

subjects increases only the number of random effects that can be generated conditional on the data and 

the model parameters. 

Fixed effects of type frequencies of the fixated word and its left and right neighbors 

LMM framework. The model (as sketched in Figure 2) represents the baseline LMM model of 

the Potsdam Sentence Corpus (PSC I) in Kliegl (2007), extended with lexical and contextual as well as 

oculomotor variables for three successive words. We use reciprocal values of launch site to reduce the 

collinearity with skipping status of word N-1 (r = .40 instead of .61) and likewise for outgoing saccade 

amplitude to reduce the correlation with skipping status of word N+1 (r = .42 instead .48). Motivated 

by the ongoing debate on lexical influences in the parafovea reviewed above and using a larger sample 

of readers (N=273), we test additional effects of frequency of word N-2 and word N+2 as additional 

predictors, conditional on whether word N-1 or word N+1 were skipped or not. The complete model 

output is provided in the fixed-effects block of Appendix A; it serves to document consistency of the 

present with earlier analyses and statistical control of effects not in the current focus of analysis (e.g., 

oculomotor variables). Differences between previous and current results will be discussed.  

Illustration of effects. We use LMM statistics to guide our theoretical arguments and use figures 

to illustrate the core LMM results. The figures are not in a one-to-one correspondence with the 

statistics. For example, we present the effects in the original, not the log-transformed metric SFDs. We 

also fit polynomial functions to subsets of data, ignoring intraclass correlations due to the random 

factors. We discuss divergences between test statistics and parts of the figure. Figure 4 summarizes the 

five frequency effects on a SFD measured on word N associated with words N-2 to word N+2 and 

their interactions with skipping status of word N-1 and word N+2; Figure 5 contains the analogous 

information for the five predictability effects.  

-- Insert  Figures 4 and 5 about here -- 

Canonical fixation pattern: Fixations on word N-1, N, and word N+1. The first row of Figure 4 

reflects the pattern when the SFD on word N was preceded and followed by a fixation on word N-1 

and word N+1, respectively. Roughly half of all SFDs (49%) are in this category. The first set of fixed 
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effects in Appendix A lists the regression coefficients associated with this category of fixations. 

Replicating previous results, there are significant cubic trends for the N-frequency and significant 

linear N+1 and N-1-frequency effects (see Figure 3). Here, to keep matters simple, we included a 

cubic trend only for the N-frequency effect and linear trends for everything else. New results of the 

present LMM are a lack of evidence for significant N+2-frequency and N-2-frequency effects. 

Interestingly, inclusion of N+2-predictability in the LMM, renders the previously reported N+1-

predictability effect as not significant (Kliegl et al., 2006). In a way, however, this shift corroborates 

the interpretation of the non-canonical direction of this effect (i.e., high predictability of word N+2 

leads to long SDF on word N) as an effect of memory retrieval during the fixation on word N. In 

summary and in general, given three fixations on successive words, SFDs on word N relate to the 

frequencies of these three words in a complex and clearly non-monotonic pattern; SFDs on word N are 

not significantly related to the frequencies of the words outside this 3-word window (i.e., words N-2 

and N+2). Does this pattern also hold for skipped words N-1 or N+1? 

Interactions of frequency and predictability with skipping. The no-skip category of SFDs serves 

as the reference category for the following tests of interactions with skipping status of words N+1 and 

N-1. All coefficients „S2 x Coeff“ in Appendix A (third block of fixed effects) test whether the effect 

indicated by Coeff is significantly different from the corresponding coefficient estimated for no-skip 

reference category when word N+1 was skipped. Analogously, all coefficients „S1 x Coeff“ in the 

fourth block of fixed effects test the difference between the effect reported for the no-skip reference 

category and the case when word N-1 was skipped. Importantly, the signs of these regression 

coefficients reflect whether an effect is weaker or stronger for no-skipping or skipping category.  

N+1 skipping (2nd row in Figure 4 and 3rd block in Appendix A). Overall, there are 

significantly longer fixation durations prior to skipped words N+1 (S2; t = 7.1). This skipping cost is 

at odds with the non-significant skipping benefit reported in Kliegl and Engbert (2005), but the 

skipping effect returned by the current LMM is estimated under the assumption that all other 

covariates in the model assume a value of zero. Kliegl (2007) documented interactions between 

skipping and length and frequency of to-be-skipped word. Also, there are considerable individual 

differences in the skipping behavior between subjects which are caught in the random effect of subject 
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in the LME. Most importantly, the cubic function relating SFD to the frequency of word N is of a 

significantly different shape if word N+1 is skipped (S2 x N-freq; t = 3.4) than the no-skip reference 

function. This difference is clearly visible in Figure 4. Indeed, much of the cubic shape is replaced by 

an almost symmetric quadratic function. In addition, there is a significantly stronger negative linear 

N+1-frequency effect for skipped than fixated words N+1 (S2 x N+1-freq; t = -2.4). Together these 

two interactions reflect that word N+1 is processed during the fixation on word N when word N is of 

high frequency and word N+1 is of low frequency, as in noun phrases.  

N-1 skipping (3rd row in Figure 4 and 4th block in Appendix A). Fixations following a skipped 

word are longer (N-1-skip; t = 23.0). Moreover, the significant effect associated with the N-frequency 

effect (S1 x N-freq; t = -4.9) reflects the difference in the shape of the corresponding curves shown in 

Figure 4. Basically, after skipping word N-1, the cubic trend of the N-frequency effect is weaker 

(more montonic) compared to fixations following a fixation on word N-1. Thus, assuming that 

skipping word N-1 indicates little additional processing need for this word, the non-monotonic shape 

of the N-frequency effect in the canoncial condition is at least partly due to spillover of processing 

from word N-1. Consistent with this interpretation is also the significantly weaker N-1-frequency 

effect (S1 x N-1-freq; t = 3.1). 

Finally and surprisingly, after skipping of word N-1, there is a significant negative effect of 

word N-2 on fixation durations on word N (S1 x N-2 freq; t = -5.8). Although this lag-2 effect is much 

weaker than the lag-1 effect, the frequency of the word last fixated (at position N-1 or N-2) lingers on 

in the fixation on word N. The reverse pattern of significant effects was obtained for the predictability 

of word N-2: No significant N-2-predictability effect for the reference case, but a significant positve 

effect if word N-1 was skipped (S1 x N-2 pred; t = 2.9). Given the absence of a positive trend in the 

respective panel of Figure 5, it is likely related to the N-2-frequency effect through a suppressor 

constellation (which also explains the statistically large negative N-2 frequency effect in the presence 

of a weak negative trend in the respective panel of Figure 4).  

Discussion 

Most research on visual word recognition is carried out with narrowly defined experimental 

paradigms of word naming or lexical decision. Much has been learned with eye-movement measures 



 19 

during reading collected from a few target words in experimental designs based on the variation of 

some close set contraints. Only a minority of research in eye movements is based on the analyses of 

entire large sentence corpora (e.g., Pynte & Kennedy, 2006; Kliegl et al., 2006; Rayner & McConkie, 

1976; Radach & Heller, 2000). Our results are in line with the proposal of a processing gradient that 

affords distributed processing across more than the fixated word, but they offer little on the precise 

mechanisms that generate the profiles. In the following sections, we highlight some of the 

methodological issues and challenges facing the corpus-analytic perspective and the theoretical issues 

that need to be addressed. In the end, the frequency- and predictability signatures represented in 

Figures 4 and 5 need to emerge from general dynamical principles linking eye guidance and lexical 

processing.  

Methodological issues and challenges 

Lack of parsimony. We consider it conceptually simpler to formulate baseline models on the 

assumption that, as a rule, we will need a third-order polynomial function for lexical properties such as 

frequency. In an ensemble of, say, 12 covariates describing all of them as third-order polynome is 

simpler than describing, say, 1 of them with a linear, 2 with a quadratic, and 9 with a cubic function. A 

„generous“ model specification, keeping possibly non-significant terms, runs counter to current 

practice according to which models should be specified as parsimoniously as possible. The aim for 

parsimony is often motivated not only by conceptual simplicity but also by statistical limitations (e.g., 

not enough observations), or  numerical or computational limits of the software we use to estimate the 

parameters. The abundance of SFDs and the current generation of software render these problems as 

not relevant for our situation. Conceptually, we forego the attempt to interpret all model parameters, 

but use them for a statistically adequate description. We justify this decision with reference to the 

argument that the statistical description achieved with an LMM must be complemented with 

computational modeling for the control of eye movements during sentence reading such as SWIFT 

(Engbert et al., 2005; Richter, Engbert, & Kliegl, 2006) or E-Z Reader (Reichle, et al.,1998; Reichle, 

Rayner, & Pollatsek, 2006). Indeed, we propose that the descriptive functions may constitute better 

simulation targets than the observed SFDs (see below).  
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LMM limits. In principle, variance components of frequency, predictability, and length effects 

cannot only be specified for subjects, but also for sentences. In practice, however, there are serious 

limitations on the number of variance components and correlation parameters that can be estimated in 

a single model. Moreover, in our admitttely limited experience, such between-sentence variance 

components are stastitically not reliable; including them does not significantly improve the goodness 

of model fit in a LRT. Obviously, such variance components can only be estimated for within-subject, 

within-sentence, or within-word effects. Thus, as far as words are concerned, only predictability 

qualifies as a within-word effect whereas length and frequency are between-word effects and cannot 

be specified in such a model.  

How do we cumulate knowledge across different analyses of the same corpus? One of the lures 

of eye-movement corpora is their almost complete representation of the peripheral behavioral process 

of reading. The richness of the data affords analyses from countless different perspectives. Almost all 

observables (e.g., SFD, skipping status) serve as dependent variable in one context and as a covariate 

in another. Advances in computational linguistics provide new indicators of lexical processing for eye 

movements collected many years back. For example, measures of syllable and lemma frequeny as well 

as measures of orthographic neighborhood are already available as predictors for the present SFDs; 

many new ones will become available soon (Heister et al., 2011). In other words, with the addition of 

new predictors, the same measures can be recycled for new analyses. This is all welcome, but the 

maintainers of such corpora will have to set up a system that keeps track of the various analyses that 

are being carried out and, as accurately as possible, document the overlap of the analyses in a 

responsible way. If such a system is not put in place, it may become very difficult to recognize the 

degree to which supposedly new results are basically old results presented with new labels. Another 

difficulty relates to the evaluation and pursuit of alternatives of complex models like the one presented 

in this chapter. Such models generate a large number of test statistics. Communicating such models is 

probably a greater challenge than fitting them. We present the summary output of the model as 

Appendix A and describe the results pertaining to the theoretical questions that motivated the 

analyses; other results serve as a statistical control. Different theoretical perspectives, equally 

plausible and interesting, would necessarily motivate a different foregrounding and backgrounding of 



 21 

information. In our opinion, it is necessary that such alternatives can be pursued without reliance on 

the present authors. Consequently, this type of analysis requires that data and scripts are available on a 

public website (in our case: http://www.dlexDB.de).  

Simultaneous estimation of fixation durations and probabilities. So far, we concentrated the 

analyses on SFDs, but eye movements during reading represent a dynamic interplay of fixation 

duration and fixation probability, that is of both “when” and “where” decisions. Consequently, 

whether a word is skipped, fixated once, twice, or three or more times is just as valid a dependent 

variable as fixation duration. For purposes of statistical inference this requires the specification of 

generalized linear mixed models (GLMMs), using either the binomial or poisson family for the 

description of the error distribution along with a suitable link function (e.g., logit link for binomial 

family). In principle, any progress in specification of a comprehensive LMM model transfers to 

GLMM  specification, even though some variables change their status from predictor to dependent 

variable and vice versa; most notably, for example, fixation duration is included as a co-variate in 

GLMMs. In perspective, we expect that fixation durtions and fixation probabilities will be merged in 

co-called rate models. At present, however, the increase in complexity is unlikely to translate into a 

commensurate increase in theoretical progress. Again, complex models probably need to grow rather 

than being legislated top down.  

Compatibility between gaze-contingent display change experiments and corpus analysis. Most 

experiments in the field of reading rely on designs based on the variation of some close set contraints 

(for an overview see Rayner, 1998). The focus is on processing a few open-class words like nouns, 

adjectives, or verbs; comparisons typically hold the syntactic structure constant (unless it is the target 

of the experimental manipulation). Research on syntactical parsing, as opposed to lexical or 

orthographic effects, in reading necessitates analyses based on whole sentences, but only a few global 

measures are typically considered (e.g., total reading time, re-reading time). The corpus-analytic 

approach comprises analyses based on large sets of sentences with statistical – not experimental - 

control of different lexical, oculomotor factors, and possibly also syntactic factors (see Kliegl, 2007). 

This approach allows one to generalize across word categories and syntactical structures, 

complementing analyses of specific target words. At this point in time, corpus analyses as presented in 
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this chapter are based on single fixation durations (or likewise on gaze durations) only. In the future, 

analyses will aim at including multiple dependent measures or categorical outcomes. 

Theoretical proposals about eye guidance in reading 

The reported results have consequences for theoretical proposals about eye guidance in reading. 

We mention three controversial topics relating to whether lexical processing occurs with sequential 

shifts of attention or is better characterized by processing gradients covering not only one, but several 

words.  

Evidence for distributed processing. Figures 4 and 5 corroborate our earlier claims (e.g., Kliegl 

et al., 2006; Kliegl, 2007) that SFD during reading are reflective of the processing of not only the 

fixated word, but also of the processing of the neighboring words. Here we established that the zone of 

influence extends at least to two words to the right and two words to the left of the currently fixated 

one. The results also show that the size of effects strongly decline as we move away from the center 

triplet, but that the effect sizes of the neighboring words can be as large as the effect sizes of the 

fixated word. The cubic trend associated with the fixated word N appears to be largely a consequence 

of the spillover from or anticipatory processing of last and next word, respectively. 

Non-monotonic effect profiles and LMM-parameters as targets for computational models. Much 

cognitive research may be characterized by ordinal data patterns. As the task gets more difficult or 

skill is reduced, reading or reaction time increases and accuracy drops. Ordinal data profiles of this 

kind are comparatively easy simulation targets for computational models. Consequently, such data 

profiles are often compatible with all competing models. We submit that the non-monotonic profiles 

reported in this chapter for N-1-, N-, and N+1-frequency effects during reading represent a formidable 

challenge for computational models. At the same time, computational models are the best hope we 

have to deliver explanations of non-monotonic data profiles on the basis of the theoretical principles 

that guided their construction. For example, we consider it plausible that cubic trends for N- and N+1-

frequency effects on SFD on word N are the consequence of the nonlinear dynamical principles 

guiding saccade-target selection from a field of fluctuating activation levels associated with the words 

of a sentence, as implemented in a future version of SWIFT. Indeed, the parameters of the polynomial 

function may turn out to be a more suitable simulation target than individual fixation durations. 
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Analysing large corpora of eye movements with linear mixed models will help us understand and 

model individual differences in readers and further unravel lexical, sublexical, and oculomotor 

processes. 

Summary 

Visual word recognition occurs in the context of reading, involving eye movements and fixations in 

the service of   providing the necessary perceptual and language-related information. This chapter 

reviews research based on analyses of a large corpus of fixation durations that allows the simultaneous 

consideration of a large number of influences. We distinguish roughly three sources: (1) There are 

contributions that arise from language-related processes. By now effects of many of the over 50 

linguistic properties of words contributing to processing efficiency in isolated word recogntion have 

been established for fixation durations or probabilities in normal reading. In addition, during reading 

of sentences, fixation durations and probabilities are influenced by variables coding the context of 

words, such as the predictability of words from prior words of the sentence or corpus-based statistics 

such as transition probabilities or surprisal measures. (2) There are contributions from the oculomotor 

process and low-level processes of eye guidance leading to effects related to preferred viewing 

locations or launch sites. (3) Finally, corpus analyses have provided reliable evidence that some 

indicators of language-related processes exert their effects during successive fixation durations. For 

example, the effect of the frequency of the next word depends strongly on whether this word will be 

skipped or not. We also provide evidence for an N+2-effect for word predictability in cases when three 

subsequent words are fixated. Regarding fixations after skippings, we find an influence of the 

frequency of the last fixated word (which could be word N-2) on the current fixation duration. We 

illustrate how such distributed processing of visual word recognition can be analyzed with state-of-

the-art multivariate statistical techniques such as linear mixed models. We discuss the consequences of 

these results for theoretical proposals about eye guidance in reading.   
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Appendix A: LMM Results, estimated with lmer (Bates & Maechler, 2010) 
 
   AIC   BIC logLik deviance REMLdev 
  21465 22014 -10674   20965    21347 
Random effects: 
 Groups   Name        Variance    Std.Dev.   Corr 
 words    (Intercept)    0.00881   0.09385 
 subjects (Intercept)    0.02300   0.15166 
    N-1-freq (lin) 0.00044   0.02109  -0.338 
    N-freq (lin)   0.00085   0.02908   0.113  -0.327 
    N+1-freq (lin) 0.00020   0.01429  -0.254   0.179  -0.448 
 sentences(Intercept)    0.00304   0.05509 
 Residual                0.07258   0.26941 
Number of obs: 80625, groups: words; 369; subjects, 273; sentences, 144 
 
Fixed effects: 
                       Estimate  Std.Error t-value  
(Intercept)   5.25116   0.01301  402.21 # Mean log(SFD) 
N-freq (linear)   0.03878   0.01218 3.18 # Effects of Word-N properties 
N-freq (quadr)   0.00595   0.00579    1.03 
N-freq (cubic)  -0.02010   0.00384   -5.23 
N-pred   -0.04033   0.00297  -13.56 
1/N-length  -0.08175   0.08238   -0.99 
N-1-freq   -0.04112   0.00364  -11.29 # Effects of Word-N-1 properties 
N-1-pred   -0.01498   0.00298   -5.03 
1/N-1-length  -0.00981   0.03803   -0.26 
N+1-freq   -0.01921   0.00368   -5.22 # Effects of Word-N+1 properties 
N+1-pred    0.00062   0.00312    0.20 
1/N+1-length   0.29004   0.03393    8.55 
N-2-freq   -0.00392   0.00329   -1.19 # Effects of Word-N-2 properties 
N-2-pred   -0.00364   0.00345   -1.06 
1/N-2-length  -0.05489   0.03739   -1.47 
N+2-freq   -0.00142   0.00304   -0.47 # Effects of Word-N+2 properties 
N+2-pred    0.00765   0.00204    3.76 
1/N+2-length   0.06684   0.03359    1.99 
    
1/launch site   0.24856   0.00562   44.23 # Oculomotor variables 
1/sacc. Ampl.   0.34264   0.02854   12.01 
IOVP (linear)   0.09485   0.00430   22.06 
IOVP (quadr)  -0.11264   0.01086  -10.37 
N-freq x N-1-freq  0.00881   0.00171    5.14 # Interactions 
N-freq x 1/N-length  0.31309   0.06163    5.08 # (see Kliegl et al. 2006) 
N+1-freq x 1/N-length  0.05023   0.02483    2.02 
N+1-pred x 1/N-length -0.11911   0.02403   -4.96 
    
N+1-skip (S2)   0.02406   0.00340    7.07 # Effect of skipping word N+1 
S2 x N-freq   0.00916   0.00266    3.44 # ... x Word-N properties 
S2 x N-pred   0.00120   0.00247    0.48 
S2 x N-1/length   0.13062   0.03204    4.08 
S2 x N+1-freq  -0.00631   0.00266   -2.37 # ... x Word-N+1 properties 
S2 x N+1-pred  -0.00387   0.00232   -1.67 
S2 x 1/N+1-length -0.19559   0.02961   -6.61 
S2 x N+2-freq  -0.00276   0.00259   -1.07 # ... x Word-N+2 properties 
S2 x N+2-pred   0.00098   0.00201    0.49 
S2 x N+2-1/length  0.01641   0.02962    0.55 
    
N-1-skip (S1)   0.07671   0.00333   23.03 # Effect of skipping word N-1 
S1 x N-freq  -0.01307   0.00266   -4.92 # ... x Word-N properties 
S1 x N-pred   0.02795   0.00254   11.02 
S1 x 1/N-length  -0.12015   0.03314   -3.63 
S1 x N-1-freq   0.00867   0.00283    3.06 # ... x Word-N-1 properties 
S1 x N-1-pred  -0.00308   0.00268   -1.15 
S1 x 1/N-1-length  0.33280   0.03187   10.44 
S1 x N-2-freq  -0.01733   0.00301   -5.75 # ... x Word-N-2 properties 
S1 x N-2-pred   0.00908   0.00314    2.89 
S1 x 1/N-2-length -0.02433   0.03140   -0.77 
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Figure Captions 

Figure 1. Different patterns of three successive fixations. N = 211.972 fixations (•) classified. 

Fixations are classified by forward/backward movements including skippings (rows) and single, first, 

and second fixations (columns). Vertical lines represent word boundaries, dashed lines indicate 

skippings. The LMM-model (see appendix) includes a subset (namely firstpass) fixations in the 

highlighted panels. N = 11.127 (5%) fixations unclassified.  

 

Figure 2. Distributed processing framework for possible influences on single-fixation duration (•) on 

word N; arrows represent possible incoming (left) or outgoing (right) saccades (i.e., word N – 1 and 

word N + 1 are fixated or skipped). Influences of Length, Frequency (Freq), and predictability (Pred) 

of word N-2, N-1, N, N+1, and N+2. (…) = additional predictors. Vertical lines represent word 

boundaries. 

 

Figure 3. (top) Effects of frequency of word N-1, word N, and word N+1 on single-fixation duration 

on word N based on data from PSC I (first set of 144 sentences; 273 readers). (bottom) Like (top), but 

based on data from PSC II (second set of 144 sentences; 149 readers). Lines are third-order 

polynomials. 

 

Figure 4. Dependent variable: Single-fixation durations on word N. Independent variables: Log type 

frequency of word N-2, word N-1, word N, word N+1, and word N+2 (columns) conditional on 

whether word N-1 and word N+1 were fixated (top row) or skipped (other rows). Lines are third-order 

polynomials. All fits are for the subset of fixations in the respective panel. Fixations after skipping 

word N-1 and before skipping word N+1 (9%) enter both skipping conditions. This results in a total of 

110% fixations entering the plot. 

 

Figure 5. Dependent variable: Single-fixation durations on word N. Independent variables: Logit 

predictability of word N-2, word N-1, word N, word N+1, and word N+2 (columns) conditional on 

whether word N-1 and word N+1 were fixated (top row) or skipped (other rows). All lines are linear 
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trends for the respective subset of fixations in the panel. Fixations after skipping word N-1 and before 

skipping word N+1 (9%) enter both skipping conditions. This results in a total of 110% fixations 

entering the plot. 
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Single fixation! First of two! Second of two!

Forward - forward!

Forward - skip!
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Figure 1 
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Figure 4 
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Figure 5 
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