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We tested the limits of working-memory capacity (WMC) of young adults, old adults, and children with
a memory-updating task. The task consisted of mentally shifting spatial positions within a grid according
to arrows, their color signaling either only go (control) or go/no-go conditions. The interference model
(IM) of Oberauer and Kliegl (2006) was simultaneously fitted to the data of all groups. In addition to the
3 main model parameters (feature overlap, noise, and processing rate), we estimated the time for
switching between go and no-go steps as a new model parameter. In this study, we examined the IM
parameters across the life span. The IM parameter estimates show that (a) conditions were not different
in interference by feature overlap and interference by confusion; (b) switching costs time; (c) young
adults and children were less susceptible than old adults to interference due to feature overlap; (d) noise
was highest for children, followed by old and young adults; (e) old adults differed from children and
young adults in lower processing rate; and (f) children and old adults had a larger switch cost between
go steps and no-go steps. Thus, the results of this study indicated that across age, the IM parameters
contribute distinctively for explaining the limits of WMC.
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According to Oberauer, Siil, Wilhelm, and Sander (2008),
working-memory capacity (WMC) “reflects the ability to keep
several chunks of information simultaneously available for direct
access” (p. 50). This capacity plays a crucial role in human
cognition. Individuals with high WMC tend to perform better than
individuals with low WMC in a range of cognitive tasks. Specif-
ically, there is evidence for the predictive power of WMC for
intelligence tests, language comprehension, and reasoning ability
(Chen & Li, 2007; Oberauer et al., 2008; Palladino, Cornoldi, De
Beni, & Pazzaglia, 2001). Therefore, a better understanding of the
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sources and mechanisms of limitation in WMC will inform psy-
chologists about processes involved in a variety of cognitive tasks.

Regarding sources of limitation in WMC, some theories have
suggested that cognitive processes such as inhibition, executive
attention and control, processing speed, and differences in capacity
of storage are responsible for individual differences in working
memory (for a review on this topic, see Conway, Jarrold, Kane,
Miyake, & Towse, 2007). Other theories have focused on the
mechanisms responsible for forgetting in working memory. Some
contemporary models of working memory and short-term memory
assign a central role to the passage of time alone as a cause of
decay of memory traces (Barrouillet, Bernardin, & Camos, 2004),
whereas other models have postulated interference as the main
cause of forgetting (Oberauer & Kliegl, 2006; Oberauer & Le-
wandowsky, 2008).

The interference model (IM) developed by Oberauer and Kliegl
(2001, 2006) successfully fitted data from different versions of a
working-memory updating task. The IM has two parameters re-
flecting two types of interference: the degree of feature overlap
between representations in working memory, which governs inter-
ference by feature overwriting, and the noise parameter, which
governs interference by confusion of items. A third parameter
reflects the average speed of information processing. Oberauer and
Kliegl (2006) examined interference among items within and
across the verbal and spatial domains and the effect of phonolog-
ical similarity. Their results showed that interference by feature
overwriting is larger among items within the same domain than it
is among items in different domains and that feature overwriting
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among items in working-memory updating tasks increases when
items are phonologically more similar to each other.

Additionally, the IM provided a satisfactory quantitative fit for
data of different age groups. An earlier version of the IM (Ober-
auer & Kliegl, 2001) successfully fitted data from young and old
adults and showed that old adults, compared with younger adults,
exhibited an increased susceptibility to interference. Furthermore,
in a recent study, the IM was used to compare typically developing
children to children with different learning difficulties (Gothe,
Esser, Gendt, & Kliegl, 2012).

These successful applications of the IM have shown that inter-
ference by feature overwriting and interference by confusion are
mechanisms that may help explain the causes of forgetting in
WMC. Mechanisms and processes such as inhibition (Healey,
Campbell, & Hasher, 2008), attentional control (Szmalec, Ver-
bruggen, Vandierendonck, & Kemps, 2011; Vallesi, Hasher, &
Stuss, 2010), processing speed (Chen & Li, 2007; Salthouse,
1996), and different kinds of interference (Szmalec et al., 2011)
have been related to individual and age differences in WMC. The
IM framework allows for the simultaneous examination of these
proposals—of course, only relative to their conceptualization in
this model. In the present study, we address the question of
whether these alternative explanations are redundant with each
other or whether they refer to separate, coexisting sources of age
differences. In addition, we investigate whether different variables
are responsible for differences between young adults and children
on the one hand and the differences between young and old adults
on the other hand.

The purpose of the present work was twofold. First, we aimed to
extend the IM to a new version of the memory-updating paradigm.
Our new task version enabled us to test the contribution of atten-
tion control in working memory by including go and no-go steps
in the updating phase. The effect of this manipulation is captured
in an additional IM parameter. We argue that inhibition or task-
switching processes are the mechanisms underlying the control of
attention. Thus, this manipulation allowed us to examine the
dynamics between the two types of interference assumed by the
IM and attention control in WMC. Second, we wanted to investi-
gate the development of WMC across the life span. Studies and
theories have attributed age and developmental differences to (a)
storage capacity (Bayliss, Jarrold, Baddeley, Gunn, & Leigh, 2005;
Cowan, 2001), (b) processing speed (Salthouse, 1996), and (c)
attention control (Chiappe, Hasher, & Siegel, 2000; Elliot, 2002;
Kane, Conway, Hambrick, & Engle, 2008; Redick, Heitz, & Engle,
2007). To test life span differences with respect to these limiting
factors of WMC in an integrated approach, we tested children,
young adults, and old adults. The remainder of the introduction is
organized as follows: First we introduce the new version of the
updating task used in our study. After that we briefly describe the
IM, and then we detail the goals of the present study.

Go/No-Go Spatial Updating Task

The task involves two different conditions: the control condition
and the new go/no-go condition. A trial of the control condition
started with the presentation of the spatial position of one, two, or
three stimuli placed in a 3 X 4 grid. The number of stimuli to be
remembered formed the level of memory demand. The subjects
were required to encode the initial position of each stimulus. After

the encoding phase, a blue arrow together with a picture of one
stimulus was presented, signaling the first updating step. An up-
dating step involved the subject mentally shifting the stimulus,
moving it one place from its current position in the direction
indicated by the blue arrow, and remembering its new position.
After five or six updating steps, the final position of each stimulus
was queried. The subjects responded by clicking with the mouse
into the field where they expected a particular stimulus to be.
Finally, a feedback screen was presented displaying all stimuli
together with a happy or a sad face for correct and false answers,
respectively.

The new go/no-go condition was the same as the control con-
dition, except for a white arrow that could be presented on updat-
ing steps. If a white arrow appeared on any of these updating steps,
the subjects were requested to not update the stimuli. Thus, one
trial in this condition could have one to three no-updating steps
(see Figure 1 for schematic representation of one trial). The ran-
dom selection of no-go updating steps prevented subjects from
predicting a no-go step. Hence, the difference between the control
condition and the go/no-go condition was the fact that in the
go/no-go condition, subjects had to selectively ignore the arrows
on no-go steps. That manipulation reduced the number of actually
completed updating steps per trial in the go/no-go condition.

Against the background of our experimental conditions, we now
present a brief description of the IM that closely follows the one
provided by Oberauer and Kliegl (2006). Readers interested in
further IM details are referred to the original article. The Appendix
of this article shows how the IM parameters are estimated.

M

Figure 2 (a modification of Figure 5 in Oberauer & Kliegl,
2006) shows a schematic illustration of the architectural assump-
tions of the IM. The IM is sketched as a network of four layers: the
context layer, the feature layer, the focus layer, and the results
layer. The example illustrates a state in which the spatial locations
of two stimuli (called objects hereinafter) in the grid have to be
stored in working memory. An assumption of the IM is that the
contents of working memory are represented as a set of active
feature units in the feature layer and in the context layer. The items
to be retrieved are represented in the feature layer, and the cues
that can be used to retrieve them are represented in the context
layer. In the spatial memory-updating task, the objects serve as
retrieval cues for their current locations. Therefore, the spatial
locations are represented in the feature layer, and the objects are
represented in the context layer. The features of each object are
bound to the features of its current location. The model supposes
that the synchronized firing of neurons could be a mechanism to
bind features of the same object to each other and to their spatial
location (Raffone & Wolters, 2001). In the example of Figure 2,
synchronization is illustrated by filling feature and context units
with the same pattern. Two objects are stored. The target location,
that is, the spatial location one needs to retrieve for updating of the
given object, is associated with the hatched feature units, and the
competitor location (i.e., the other object’s location) is marked by
the checkered feature units.

The IM assumes that any two representations in working mem-
ory share a proportion, C, of their features (i.e., feature overlap),
with more similar representations sharing more features. In the

F1

F2



APA NLM

| tapraid5/z2p-devpsy/z2p-devpsy/z2p00113/22p3097d13z | xppws | S=1 | 11/14/12 | 4:54 | Art: 2012-1507 | |

WORKING MEMORY CAPACITY IN A GO/NO-GO TASK 3

— =T 1
T |
&y h Feedback
-
[T TR |
i B / |
. 1
| 1 1
i 1
T — —‘E’_ / Probing of final positions
B L \
| | 1
— 1
v Vv |
+ \/ 4 go steps and 1 no@o step (indicated by white arrow)
|
1
|
- H
Presentation of initial
Fixation 1 s positions: 2 s per stimuli
Figure 1. Task example of a trial involving a memory demand of two objects in the go/no-go condition.

example, the two spatial locations share two feature units denoted
with 1 and 2. If a shared feature fires in synchrony with one phase,
thereby being included in the same representation, then this feature
cannot fire at the same time in synchrony with another phase.
Consequently, the other representation loses the feature unit. This
interference mechanism is called feature overwriting (Nairne,
1990). The example shows that each spatial location lost one
feature because of overwriting. The target location lost Feature
Unit 1 and the competitor location lost Feature Unit 2. In the
example, the target location transfers only four fifths of its maxi-
mum activation strength, because it had lost Feature Unit 1. As a
consequence of the feature overwriting of the two locations in our
example, the focus unit of the competitor also receives one fifth of
its maximum activation. This is because of the fact that Feature
Unit 2, on which the locations overlap, fires in the hatched phase
and transfers its activation to the focus unit of the competitor. In
the focus layer, the location with the highest activation is selected
for further processing. In the example, the relative activation levels
of target and competitor in Figure 2 (i.e., 4/5 and 1/5, respectively)
would lead to correct selection of the features of the target loca-
tion, which would consequently be used it as input to the shifting
operation. The result of the operation (i.e., the new location of the
given object) is subsequently transferred to the result layer. How-
ever, activation in the focus layer is noisy. The activation levels
must therefore be interpreted as expected values of random vari-
ables. The standard deviation of the activation in the focus layer
(i.e., the o parameter) is assumed to reflect interference by con-
fusion.

The time it takes that activation spreads from the context layer
(i.e., presentation of the cue) to the result layer (i.e., selection and
updating of the stimulus) is captured by the processing rate, r. The
IM takes into account that updating an object that has been updated
on the immediately preceding step is faster than updating another
item in working memory (Garavan, 1998; Oberauer, 2003). This

so-called object-switch cost can be explained by assuming that,
after an updating step, the result is projected back into the focus
layer, so that the to-be-updated location is already strongly
activated in the focus layer when the next updating step com-
mences. To account for this assumption in the formalization, the
IM distinguishes two rate parameters, r, and r. The rate param-
eter r, reflects the speed of updating in the condition when
memory demand is equal to 1, that is, when no object switch is
necessary. The rate parameter r reflects the speed of updating in
conditions when memory demand is more than 1, that is, when
an object switch is necessary between every updating step and
the next.

The go/no-go condition has two different types of updating
steps: one that was followed by another updating step (as in the go
condition) and one that is followed by a no-go step. In the latter
case, this no-go time can be used to complete the preceding go
step. We therefore doubled in the model the time for an updating
step followed by a no-go step, compared with an updating step that
is followed by another updating step. We included a further pa-
rameter sc that reflects the time cost of switching between go and
no-go steps. This was done because the switch between a go and
a no-go step could demand time.

In summary, the basic implementation of the IM has four free
parameters. The C parameter captures the mean degree of feature
overlap among representations in the feature layer (in the present
case, among representations of spatial locations). The noise pa-
rameter, o, reflects the noise in the system and determines the
extent of interference by confusion between locations at retrieval.
The two rate parameters, r, and r, reflect the speed of updating one
object’s location that is or is not already activated in the focus
layer, respectively. For our experiment, we specified an IM with an
additional sc parameter, which reflects the time cost of switching
between a go and a no-go step.
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Figure 2.

Schematic illustration of the architectural assumptions of the interference model. Adapted from “A

Formal Model of Capacity Limits in Working Memory,” by K. Oberauer and R. Kliegl, 2006, Journal of Memory

and Language, 55, p. 608. Copyright 2006 by Elsevier.

Present Study

In the present study, we investigated several sets of hypotheses
related to the postulated limiting factors of WMC: (a) storage
(feature overlap, C; noise, 0); (b) processing speed (rate, r); and (c)
attentional control (switching, sc) and, furthermore, looked at (d)
life span differences with respect to these limiting factors. First, we
expected that limits of working-memory updating due to increas-
ing memory demand can be traced to two sources of interference
associated with the IM parameters: a higher proportion of feature
overwriting and a higher amount of interference by confusion
(Gothe et al., 2012; Oberauer & Kliegl, 2001, 2006, 2010).

The second hypothesis related to speed of processing captured
by the r parameter in the IM. Oberauer and Kliegl (2006) already
tested two exploratory models (see Table 1, Models 1a and 5a, in
Oberauer & Kliegl, 2006) with different rate parameters when
memory demand was equal to 1, memory demand was equal to 2,
and memory demand was more than 2, thereby further differenti-
ating parameter r (for memory demands > 1). In the present study,
we wanted to test again if the IM required more than one rate
parameter for memory demands larger than 1. One reason why rate
might continuously decrease with increasing memory demand is
that competing responses inhibit each other, as proposed by
Usher and McClelland (2001). Strong competition among work-
ing memory representations could slow down the retrieval of
any one of them through inhibition, consequently reducing the
rate of updating.

The third part investigated attentional control via the introduc-
tion of the go/no-go condition. For this condition, we at first

adjusted time parameters that the presentation time of a no-go step
can be used to complete the preceding updating step. This exten-
sion of processing time should lead to better overall performance
in the go/no-go condition. To the degree that this model accurately
reproduces the differences between the go/no-go and control con-
ditions, this assumption gains support from the data.

In this condition, however, we also tested if an IM with a sc
parameter reflecting the time of switching from a go step to a
no-go step offers a better account for the data (i.e., improve the
goodness of the model) compared with a model without that
parameter. We consider two interpretations of the sc parameter in
terms of different aspects of attentional control. One interpretation
of the sc parameter, therefore, is that it reflects the time cost of
inhibiting the updating during a no-go step. An alternative inter-
pretation is that sc reflects the time to switch from the update task
set to the do not update task set. We cannot empirically distinguish
these interpretations of the sc parameter but, in both cases, atten-
tional control is involved.

Furthermore, we explored whether switch cost increases with
memory demand. The reason could be that the stimulus accompa-
nying the arrow serves as an automatic cue to the location of the
depicted object in the grid. If this leads to retrieval of a location
that differs from the location to be updated on the preceding go
step, it would disrupt the continuation of the preceding updating
operation during the presentation time of the no-go step. This can
happen only when memory demand is larger than one. Therefore,
an increase in switching time as a consequence of larger memory
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demand would be sufficient to explain the time cost reflected in the
sc parameter.

The fourth set of hypotheses is related to life span differences—
that is, developmental and aging effects—in working-memory
updating. Feature overlap was already found to increase with age
(Oberauer & Kliegl, 2001). However, a developmental decrease—
that is, a lesser susceptibility to interference through feature over-
writing for younger adults compared with children—still needs to
be tested. In a recent study, Gothe et al. (2012) compared children
at the age of 8 years with children at the age of 11 years and were
not able to attribute higher storage capacities for the latter group to
lower feature overlap. With a much broader age range (i.e., com-
paring children with young adults), we expect to find developmen-
tal effects on feature overwriting. We predict the same for inter-
ference due to noise (i.e., the confusion of whole stimuli): Children
and older adults are expected to show more noise than young
adults.

Generally, speed of processing was found to decrease with age
(Salthouse, 1996). Applying the IM to data of a numerical
memory-updating task of young and old adults, Oberauer and
Kliegl (2001) could not exactly attribute age differences to the
noise or the rate parameter due to a high correlation between the
parameters. We wanted to check whether dissociation is possible.

We expect that both children and older adults exhibiting a
higher switch cost than do young adults. Bjorklund and Harnish-
feger (1990) proposed that young children have inefficient inhibi-
tion in working memory. As they grow older, children are assumed
to improve in selective attention and the ability to keep out of
working memory irrelevant information. Inhibitory control defi-
ciencies in old age are assumed by the inhibitory control theory of
Hasher, Zacks, and May (1999). This theory postulates inhibition
efficiency as the main source of individual and group differences
(Hasher, Zacks, & May, 1999).

To summarize, the goals of the present study were (a) to provide
new evidence for the proposition that limits of working memory
are a consequence of interference by feature overwriting and
interference by confusion; (b) to further test if the rate parameter
increases with memory demand; (c) to examine an implementation
of the IM postulating that the time during no-go steps is used to
complete the preceding go step and to test if the inclusion of the sc
parameter reflecting attentional control offers a better account for
the data; and (d) to investigate which IM parameters change across
the life span, especially when simultaneously testing the different
accounts claiming to explain WMC limitations and whether dif-
ferent developmental trajectories can be found.

Method

Subjects

A total of 62 persons participated in the experiment. Children
were recruited from a school in Potsdam, young adults were
students from the University of Potsdam, and older adults were
recruited from the Potsdam participant pool. Table 1 summarizes
biographical, self-report, and test data as a function of age group.
All subjects responded to a self-report with four questions (on a
scale from 1 = very good to 5 = very bad) concerning life
satisfaction, physical health, mental health, and mental perfor-
mance. The last two issues were replaced for children to report

Table 1
Sample Description for the Three Groups

Effect Children Young adults  Older adults
n 22 18 22
Female/male 8/14 12/6 13/9
Age 10 (0.39) 23 (2.01) 73 (2.62)
Years of education 4 14.81 (1.28) 12.80 (2.78)
Life satisfaction 1.75 (0.78) 1.89 (0.65) 2.05 (0.65)
Physical health 1.7 (0.80) 2.21(0.78) 2.36 (0.76)
Mental/school performance 2.4 (0.82) 2.36 (0.89) 2.38 (0.60)
Mental health 2 (0.57) 2.05 (0.87)
Vocabulary test 31.63 (2.00)  33.27(1.52)
Digit-symbol test 65.11 (8.88)  47.27 (9.32)

Note. Entries refer to the mean values with standard deviations in paren-
theses except for n and the female/male ratio.

school performance, which implies that children completed a self-
report with three questions. All groups reported values on all
questions above scale average (i.e., 3); children tended to rate
themselves as more satisfied and healthier than young adults did
and older adults tended to rate themselves as less satisfied and
healthy than young adults did.

In addition, young and older adults performed a multiple-choice
vocabulary test and the digit—symbol test from the German version
of the Wechsler intelligence test. Older adults reached slightly
higher scores on the vocabulary test but younger adults achieved
higher scores on the digit—symbol test. Thus, the two groups were
comparable to typical samples of young and older adults with
respect to their cognitive status (e.g., Chen & Li, 2007).

Material

The task was programmed with E-Prime 2.0 (Schneider, Es-
chman, & Zuccolotto, 2002). We used nine different monochrome
pictures representing animals or objects (see Figure 1 for an
example). The selection of the stimuli made sure that their word
names were of similar length with maximum phonological dissim-
ilarity to minimize effects of the verbal representation of each
picture (i.e., the German words for these pictures were Frosch,
Hund, Eis, Topf, Huhn, Ei, Mond, Kuh, and Hai).

Design

The experiment crossed three factors: age (young adults, chil-
dren, and old adults), updating conditions (control and go/no-go
conditions), and memory demand (one, two, and three objects). It
comprised three sessions of 1 hr each. Subjects performed one
session per day with a 5-min break. In one session, they performed
12 blocks: two blocks per memory demand for each updating
condition. Presentation orders of each updating condition and of
each memory demand were counterbalanced across subjects. In
total, subjects completed 216 trials in each updating condition.

Each block contained 12 trials each with a different presentation
time for the updating steps. The 12 presentation times ranged from
563 ms to 3,474 ms with a constant 18% increase between suc-
cessive times. The 12 presentation times of each block were
categorized into fast, medium, and slow categories, with four times
in each. Order of presentation-time categories was fixed within
each block, repeating a sequence of medium—slow—fast. Within
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each category, presentation times were chosen randomly without
replacement. The selection of these presentation times is an im-
portant aspect of our design because it would help to estimate how
much time the different age groups need to achieve their particular
asymptotic level of accuracy. Time—accuracy functions are a pro-
cedure that address this concern. Furthermore, an advantage of this
procedure is that it avoids the speed—accuracy trade-off and issues
of ceiling and floor effects, therefore enabling a comparison across
age groups that is not compromised by these problems.

Trial Procedure

At the beginning of each trial, a screen displayed the memory
demand of the upcoming trial together with the names of the
stimuli that had to be shifted within the grid. The trial started with
a 1,000-ms fixation cross in the screen center. This display was
followed by presentation of one, two, or three stimuli placed in a
3 X 4 grid. Subjects had to encode their locations during an
encoding phase, which lasted 2 s per stimulus (i.e., the encoding
time of a trial with memory demand 3 was 6 s). An updating step
was indicated by the presentation of the probe in the center of the
screen; the probe consisted of the simultaneous presentation of a
blue arrow and a picture of one of the encoded stimuli, with the
arrow placed above, below, to the left of, to the right of, or in a
diagonal position to the stimulus. Arrows could point to eight
possible directions (e.g., top, below, left, right or diagonal). The
subjects were instructed to mentally shift an object’s position one
step in the grid from its current position according to the direction
of the arrow and remember its new position. Each trial consisted of
five or six updating steps, and all objects had to be updated at least
once. After updating, subjects had to enter the final position of
each stimulus by clicking with the computer mouse in the specific
cell of the grid. After all responses were given, feedback was
displayed by presenting each stimulus together with a happy face
or a sad face for correct and incorrect responses, respectively.

The go/no-go condition was identical to the control condition
except for the presentation of a blue or white arrow on updating
steps. If a white arrow appeared, subjects were instructed not to
shift the position of the respective animal. A trial could have one,
two, or three no-go steps.

Statistical Methods

We implemented the IM in a nonlinear mixed-models
(NLMMs) framework as follows. The accuracy on a given trial is
a function of the following independent variables: presentation
time of updating operations (12 levels), updating conditions (con-
trol condition and go/no-go condition), three memory demands
(one, two, and three), and age groups (children, young adults, and
old adults). The IM model, together with its parameter values,
predicts accuracy as a function of presentation time, memory
demand, and updating condition as specified by the model equa-
tions presented in the Appendix. The model parameters are, in
turn, regarded as dependent variables of the remaining independent
variable, age group. Thus, the IM embedded in an NLMM frame-
work is a two-stage model. In the first stage, model parameters for
each individual are predicted from age group and updating condi-
tions by mixed-effects linear regression. In the second stage,
accuracy for each level of presentation time, memory load, and

updating condition is predicted for each individual by the (nonlin-
ear) equations of the IM model.

In the context of NLMMs, fixed effects specify the influence of
independent variables on IM parameters; these effects are esti-
mated as the mean change in the dependent variable relative to the
levels of a condition of the design (slopes) and intercepts. For C
and o parameters, we coded the fixed effects of age group and
updating condition as successive differences contrasts (Venables
& Ripley, 2002, p. 148). These contrasts captured differences
between the means of successive levels and the intercept estimates
the grand mean. Thus, the fixed effect of age factor reflects the
difference between the second level (young adults) and the first
level (children) as well as the difference between the third level
(old adults) and the second level. The fixed effect of updating
condition involves the difference between the go/no-go condition
(second level) and the control condition (first level). Contrasts for
sc parameter captured differences among age groups—coded as
successive differences contrasts—and between memory demand
equal to 1 and memory demands more than 1. Likewise, the slope
of r was modeled by successive differences contrasts, using mem-
ory demand of 1 as the first level, and memory demand of 2 as the
second level, and memory demand of 3 as the third level.

Additionally in the context of NLMMs, individual differences in
the intercept or slope of each IM parameter can be estimated as
random-effect parameters (i.e., variance component). If a random-
effect parameter improves the model’s fit, the random-effect pa-
rameter represents evidence for reliable interindividual differences
in the associated fixed effect.

IM parameters were estimated as follow. First, we averaged the
accuracies by subject, memory demand, updating conditions, and
presentation time. Second, these data were used to estimate the IM
parameters separately for each subject. Following the IM formulas,
we estimated a set of coefficients that included the C, o, r, and sc,
for each subject. Third, the estimated coefficients were used as
start values to estimate fixed effects and variance components of
the NLMMs. For data processing and analysis, we used R, a
language and environment for statistical computing (R Develop-
ment Core Team, 2010). The specific R packages used were the
nlme package (Pinheiro, Bates, DebRoy, Sarkar, & the R Devel-
opment Core Team, 2010), the lattice package (Sarkar, 2008), the
ggplot2 package (Wickham, 2009), and the reshape package
(Wickham, 2007).

Our model-building strategy consisted of the implementation of
a full model, which included fixed effects (i.e., intercepts and
slopes) and random effects. Additionally, we tested if the model
needed different rate parameters according to age and memory
demand. Then we specified a model that included all fixed effects
(slopes and intercepts) and the intercepts C, o, r, and sc as random
effects. Afterward, we tested the statistical importance of random
effects in a model by selecting the smallest random effect as
candidate to be eliminated. Finally, we tested whether correlations
among random effects were needed. Then we examined by graph-
ical outputs its statistical adequacy with respect to the underlying
distributional assumptions of NLMMs.

For model selection, we used multiple criteria: the log-
likelihood statistic returned by the nlme function in R, along with
Akaike’s information criterion (AIC) and Bayesian information

criterion (BIC). We also computed a Rﬁdj statistic (McElree &
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Dosher, 1989) as a descriptive index. The AIC and BIC allow the
comparison between models of different complexity and are de-
rived from the log likelihood. The model with lowest AIC and BIC
is preferred.” We checked if the elimination of a fixed effect or a
random effect left a better fit with respect to AIC, BIC and
log-likelihood criteria. Additionally, we included the AIC and BIC
differences (i.e., AAIC, ABIC), which help to disambiguate the
model selection process. The AAIC and ABIC differences are
computed by the same procedure. So here we give an example
based on the AAIC that shows how to compute them. The proce-
dure selects the model with the lowest AIC; that is a preliminary
winning model. Then the differences between a preliminary win-
ning model and the remaining models are computed. After obtain-
ing these differences, the winning model adopts a value of 0 and
the other models adopt the differences. According to Burnham and
Anderson (2002, p. 70), values of AAIC between 0 and 2 indicate
little support to discriminate between models, from 4 to 7 indicate
less support for the model with higher AIC, and of more than 10
suggests no support for the model with the higher AIC. According
to Wasserman (2000), ABIC may be interpreted in the same way.

Results

First, we performed an analysis of variance to offer a standard
overview of results, with proportion of correct responses as a
dependent variable and presentation times (ordered from 563 ms to
3,474 ms), updating conditions, memory demand, and age as
independent variables. The independent variables were specified
as successive differences contrasts, and the levels of each factor
were ordered as was described in the Statistical Methods section.
Age is a between-subjects factor, and the other independent vari-
ables are within-subject factors. Table 2 shows the sources of
variance in this analysis, and Figure 3 shows the means and their
respective standard errors. The age group effect reflected higher
accuracy for young adults than for children and old adults. As
expected, accuracy increased with presentation time and decreased
with memory demand. Accuracy was higher in the go/no-go con-
dition than in the control condition. The Age Group X Presentation
Times interaction and the Age Group X Memory Demand inter-
action suggest that the groups were affected differently by presen-
tation times and memory demands, respectively. Specifically,
young adults were less affected by the presentation times and
memory demand than were the other age groups. Accuracy of each
age group was similarly affected by updating conditions, as re-
flected by the nonsignificant interaction between age groups and
updating conditions. Additionally, the Updating Conditions X
Memory Demand interaction and the Updating Conditions X
Presentation Times interaction indicated that the difference be-
tween conditions was more pronounced in shorter presentation
times and with higher memory demands, respectively (see Figure
3). Finally, the Memory Demand X Presentation Times interaction
showed that the decline of accuracy with memory demand was
more pronounced at shorter presentation times than at longer
presentation times.

Following the model-building strategy presented in the last
section (i.e., to start with a full saturated model), we regarded
Model 1 as the model that fits the data best while agreeing with
NLMM distributional assumptions. Table 3 presents the descrip-
tive Rﬁdj statistic and the model-selection criteria of Model 1 and

more constrained versions of the IM. Model 1 included the fixed
effects specified in the Statistical Methods section but estimated
the rate parameters for each memory demand as the same for
young adults and children (see in Table 2 the parameters of r with
the subscript Ch.Y.MD > 1 and Ch.Y.MD > 2). The reason for
this constraint in Model 1 was that children and young adults did
not differ in the rate parameter and therefore it was not necessary
to include independent rate parameters for children and young
adults. Model 1 included variance components for means (inter-
cepts) and correlation parameters of C, r, o, and sc parameters.
Correlation parameters involving the C-intercept parameter were
fixed to zero because they included O in their confidence intervals.
Additionally, we modeled age-related heteroscedasticity by allow-
ing for variance differences between young adults and the two
other age groups (Pinheiro & Bates, 2000).

Table 3 shows how the progressive elimination of some fixed
effects diminishes the goodness of fit of a specific model com-
pared with Model 1. For instance, in Model 2, the elimination of
the rate parameters with the subscript Ch.Y.MD > 2 and O.MD >
2 reduced the fit of the model to the data, which is especially clear
in the AAIC and ABIC (see the guidelines described in the Sta-
tistical Methods section). This misfit could be interpreted as
strength of evidence in favor of Model 1, which includes different
rate parameters for a memory demand larger than two objects in
children and young adults (Ch.Y.MD > 2) and in old adults
(O.MD > 2), whereas Model 2 assumed that these rate parameters
were the same as for memory demand 2. In contrast, the AIC
values of Model 3 compared with Model 2 indicate that the
elimination of the C and o parameters with the subscript GNG-
Contr. did not change its goodness of fit. In terms of BIC values,
Model 3 was favored over Model 2. Thus AIC and BIC values
supported our expectations; namely, updating conditions do not
differ in terms of C and o parameters. Finally, the last four models
presented in Table 2 showed that models including the sc param-
eter are preferred. First, the model selection criteria supported
Model 6 over Model 7. Model 6 differed from Model 7 in that it
included the sc parameter as fixed effect and random effect (stan-
dard deviation and correlations). Second, the model-selection cri-
teria favored Model 8 over Model 9, and these models differed
only in the fixed effect of the sc parameter. Thus, the fit favoring
Model 8 relative to Model 9 is not explained by the inclusion of
random effects, as could be argued on the basis of a comparison
between Model 6 and Model 7.

! These indexes penalize for the number of free parameters and therefore
they are a compromise between accuracy and parsimony. Nevertheless,
AIC and BIC must be interpreted differently. The AIC index gives infor-
mation about which model among a set of models reduces the uncertainty
with respect to a true model explaining the data. The BIC index is
superficially similar to the AIC index because it is also derived from log
likelihood, but it provides a different penalty term. The BIC index differs
from the AIC index when the number of data points is larger than eight,
which has as a consequence a greater preference for simple models. In
addition to this difference, the derivation of the BIC index was motivated
by Bayesian theory. D. Anderson (2007) stated, “Almost any short sum-
mary as to what BIC is supposed to do is probably somewhat wrong or
incomplete” (p. 160). Here we offer only a presentation of BIC to offer
some rules about the use of the BIC index as criteria in model selection.
Readers interested on a detailed overview are referred to Appendix E in D.
Anderson (2007), which offers a brief description and useful references of
the BIC index.

AQ: 2
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Table 2
Analysis of Variance

Effect F df P g,
Age group 20.33 2,59 <.001 23
Presentation times 175.47 11, 649 <.001 .19
Memory demand 466.01 2,118 <.001 .36
Updating conditions 225.60 1,59 <.001 .04
Age Group X Presentation Times 6.28 22, 649 <.001 .01
Age Group X Memory Demand 12.97 4,118 <.001 .03
Age Group X Updating Conditions 0.79 2,59 454 .00
Updating Conditions X Memory Demand 8.46 2,118 <.001 .00
Updating Conditions X Presentation Times 15.48 11, 649 <.001 .01
Memory Demand X Presentation Times 6.52 22,1298 <.001 .01

Note. The symbol nZG represents generalized eta squared statistics. The generalized eta squared statistic takes
into account others sources of variance that are overlooked in partial eta squared, but its interpretation is the
same. In addition, generalized eta squared allows the comparability of effects sizes across designs that vary in
terms of blocking factors and covariates or in the inclusion of additional factors (for details, see Olejnik &

Algina, 2003).

Figure 4 displays the data together with the predictions derived
from parameters of Model 1 as a function of presentation time, the
updating conditions, memory demand, and age group. The predic-
tions of Model 1 recover the data very well. Table 4 summarizes
the parameter values for Model 1. Furthermore, with the exception
of the correlation parameter between sc and r, the remaining
random effects (i.e., standard deviations and correlation parame-
ters) were significantly different from zero (see Table 5 for de-
tails).

One of our goals in this work was to examine the effect of
updating conditions on IM parameters. As expected, Model 1
showed that the control and go/no-go conditions did not differ on
C and o parameters (see Table 4); the difference between these
updating conditions is entirely captured by the sc parameter. An-
other purpose of this study was to test whether IM parameters vary
across age groups. The contrast of young adults with children
(subscript Y-Ch) was not significant; thus, there is no evidence that
children and young adults differ in their susceptibility to interfer-
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563 664 783 925 1091 1287 1518 1792 2114 2495 2944 3474
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Presentation time (ms)

Figure 3. Mean proportion correct as a function of presentation time and updating conditions for the three
memory demands (top panels show memory demand = 1, middle panels show memory demand = 2, and bottom
panels show memory demand = 3) and age groups (children in the left panels, young adults in the middle panels,
old adults in the right panels). Error bars represent %1 standard error.
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Table 3
Model Testing Sequence of the Interference Model With Fit Indices
Model Fixed effects Random effects df AIC AAIC BIC ABIC Log-lik Ri ”
1 Croes Cong-contr Cy-cv Co-vr Oy Crnes Tines Trnes 28  —5,522.171 0.000 —5,342.804 0.000 2,789.085 .80
OGNG-Contrs Ty-Chv T0-v» $C1nt.» SCipe» plus
SCy_ch SCo-ys SCMD = 1 Fnes correlation
Tepymp = » TCh.y.MD > 2> To.MD > parameters”
L, Tomp > 2> To-y.ch
2 Cher Cong-contrs Cy-ch Coy> Orne»  The same 26 —5,430.945 91.225  —5,264.446 78.418 2741472 .80
OGNG-Contr.» Ty-ch» T0-v>
SCint, SCy-ch> $€o-v> SCMD > 1> 'nt.>
Tehymp = 1 "'oMD > 15 To-v.ch
3 Cines Cyecn Coys s Ty_cns To. The same 24 —5,431.268 90.902  —5,277.577 65287  2,739.634 .80
Y, $Crne SCy-chs $Co-vs SCMD > 1>
Tt Tehy.Mp > 1> Tomp > 15 To-
Y.Ch
4 Cines Cyecn Coys T Ty_cns To. The same 23 —5,360.731 161.439  —5,213.444 129.420  2,703.365 .79
Y, 8Cnes SCy.chr $€o-v» It
Fenymp = 12 ToMD > 15 To-y.ch
5 Croes Cyvecn Cooys Tmnes Ty_cns To. The same 21 —5,327.760 194410  —5,193.280 149410 2,684.880 .79
Y5 SCipes SCy-chs S€0-v> s To-
Y.Ch
6 Chues Ot SCrnes Tt The same 14 —5,277.207 244963  —5,187.554 155310  2,652.604 .79
7 Crnes Oines e, Cint> Ot T’ 10 —5,147.124 375.046 —5,083.086 259.777  2,583.562 .78
8 Crnes Tines Ttnes SCrn Cin” 6 —3459.673 2062497 —3,421.250 1,921.614 1,735.837 .66
9 Craes Ttnes Orne, Cio ® 5 —3416.887 2,105284 —3,384.8068 1,957.966 1,713.443 .66
Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; AAIC = differences between winning model and the remaining

models; ABIC = differences between winning model and remaining models; Log-lik = log-likelihood statistic; GNG = go/no-go condition; Contr. =

control condition; Y = young adults; O = old adults; Ch = children; Int. = intercept (grand mean); O-Ch.Y = contrasts between old adults and children
and young adults as one group; O.Ch-Y = contrasts between old adults and children (as one group) and young adults; Ch-O = contrasts between children
and old adults; MD > 1 = different rate parameter when memory demand is greater than 1; MD > 2 = different rate parameter when memory demand
is greater than 2; GNG.MD > I: contrasts between memory demand of 1 versus memory demand larger than 1, a contrast specific for the go/no-go
condition.

“Model 1 includes as variance components: standard deviations of intercepts, correlation parameters (correlation parameters of the C,,, were constrained
to 0), a different variance between young adults and the other age groups. ° Model 7 includes as variance components standard deviation of C,,, Oy
I'me» @ correlation parameter between, oy, and ry, , and a different variance between young adults and the other age groups. Models 8 and 9 include the

standard deviation of Cy,, and a different variance between young adults and the other age groups.

ence through feature overwriting. Children, however, had a higher
noise parameter o compared with young adults, as indicated in the
pairwise contrasts of young adults with children (subscript Y-Ch).
The C parameter was smaller for young adults than old adults, as
reflected in the significant slope parameter for the pairwise con-
trast of old adults with young adults (subscript O-Y). With regard
to noise, there was no significant difference between old adults and
young adults (subscript O-Y). Thus, compared with young adults,
children, but not old adults, appeared to be more susceptible to
interference by confusion. Furthermore, in Table 4, the r parameter
with the subscript O-Ch.Y indicated that old adults were slow in
processing the updating steps compared with children and young
adults. The rate parameters for young adults and children did not
differ significantly. The sc parameters with the subscripts Y-Ch
and O-Y showed that children and old adults needed more time
than young adults for switching from go to no-go steps.

We also tested whether an additional r parameter is needed for
memory demand that is greater than 2. The r parameters with the
subscripts Ch.Y.MD > 1 and Ch.Y.MD > 2 indicated that for
young adults and children, a distinction between rates for memory
demands of 2 and 3 improved model fit. In contrast, old adults had
a lower estimated rate, and they did not need a different rate for
memory demand larger than 2. Thus, the data support different rate
parameters for each memory demand in children and young adults
but not in old adults.

Finally, the effect of memory demand on the sc parameter with
subscript MD greater than 1 was in the opposite direction of our
expectations. That is, the sc parameter decreased for memory
demands larger than 1.

Discussion

In the present study, we tested two forgetting-related mecha-
nisms and sources of variation in WMC in three groups varying
widely in age (i.e., children, young adults, and old adults). To this
end, we fitted the IM to data of a working-memory updating task
with a control condition and a go/no-go condition. In the follow-
ing, we summarize and discuss general results and life span dif-
ferences with respect to storage, speed of processing, and atten-
tional control.

Storage

The IM recovered the data well, and this provides support for
the model’s main assumptions: A higher memory demand in-
creases the probability that representations lose a proportion of
features units through interference by overwriting, and items are
confused at recall due to noise (Oberauer & Kliegl, 2001, 2006,
2010; Gothe et al., 2012).

Children were more susceptible to interference by confusion, as
indicated by their o parameter being larger than that of young
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Figure 4. Time—accuracy functions aggregated by memory demand, updating condition, and age group. Dots
represent data. Lines indicate the predictions derived from interference model.

adults. This parameter reflects problems accessing the appropriate
representation in working memory, leaving more competition for
the activation in the focus layer. At the same time, there was no
difference between children and young adults in the degree of
interference by overwriting, as reflected in parameter C. These

Table 4
Parameters Estimates of Model 1

results are in accordance with an earlier developmental study by
Gothe et al. (2012), who also found that 11-year-old children had
less noise (for a spatial and a verbal memory updating task)
compared with 8-year-old children, although there was no differ-
ence in the overwriting parameter between these two groups.

Approximate 95%

Effect Parameter Value confidence intervals SE T 4

Intercept of C Crat. 0.417 [0.391, 0.442] 0.012 32.49 <.001
Slope of C (updating conditions) CGNG-Contr. —0.005 [—0.025, 0.014] 0.010 —0.53 0.589
Slope of C (age) vl —0.029 [—0.082, 0.024] 0.027 —1.06 0.285
Slope of C (age) Co.y 0.162 [0.010, 0.222] 0.030 5.26 <.001
Intercept of o One. 0.184 [0.174, 0.195] 0.005 34.40 <.001
Slope of o (updating conditions) O GNG-Contr. 0.001 [—0.003, 0.006] 0.002 0.69 0.489
Slope of o (age) Cy_ch —0.038 [—0.058, —0.019] 0.009 —-3.91 <.001
Slope of o (age) 0oy 0.016 [—0.007, 0.041] 0.012 1.32 0.184
Intercept of sc SCrnc. 0.530 [0.437, 0.623] 0.047 11.16 <.001
Slope of sc (age) SCy.ch —0.192 [—0.379, —0.005] 0.095 —2.00 <.05

Slope of sc (age) SCo.y 0.253 [0.069, 0.437] 0.093 2.69 <.01

Slope of sc (MD > 1) SCMp = 1 —0.617 [—0.746, —0.488] 0.066 —9.34 <.001
Intercept of r Pine. 1.674 [1.556, 1.784] 0.056 29.77 <.001
Slope of r (MD > 1 X Age) TohY.MD > 1 —0.569 [—0.762, —0.377] 0.098 —5.78 <.001
Slope of r (MD > 2 X Age) Fehy.MD = 2 —0.546 [—0.648, —0.443] 0.052 —10.44 <.001
Slope of r (MD > 1 X Age) To.MD > 1 —0.340 [—0.457, —0.224] 0.059 =572 <.001
Slope of r (MD > 2 X Age) Fo.MD > 2 0.034 [—0.091, 0.159] 0.064 0.53 0.592
Slope of r (age) To-y.Ch —0.438 [—0.650, —0.227] 0.108 —4.05 <.01

Note.

Contr. = control condition; GNG = go/no-go condition; Y = young adults; O = old adults; Ch = children; Int. = intercept (grand mean); Y-Ch =

contrasts (i.e., differences) between young adults and children; O-Y = contrasts (i.e., differences) between old adults and young adults; MD > 1 = contrasts
(i.e., differences) between memory demand (MD) 1 versus MD larger than 1; Ch.Y.MD > 1 = different rate parameter for MD > 1 (the same rate parameter
for young adults and children); O.MD > 1 = different rate parameter for MD > 1 (old adults); Ch.Y.MD > 2 = different rate parameter for MD > 2
(the same rate parameter for young adults and children); O.MD > 2 = different rate parameter for MD > 2 (old adults); O-Y.Ch = contrast between old
adults on one side, and young adults and children on the other side.
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Table 5
Random Effects Matrix of Model 1

Parameter Random effect Cinercept (COTTElation) Tinercept (COTTElatiON)
Cintercept 0.071 [0.057, 0.089]
Cintercept 0.038 [0.031, 0.047]

0.321 [0.244, 0.422]
0.181 [0.121, 0.269]
0.10

rinlcrccpl
scimercep!

Residual error

0.706 [0.447, 0.885]

0.531 [0.191, 0.757] 0.238 [0.264, 0.639]

Note.

In contrast, older adults were more susceptible than young
adults to interference by feature overwriting. Interference by fea-
ture overwriting was the greatest effect differentiating between old
adults and young adults (see Table 4). This replicates previous
results comparing young and old adults using the IM (Oberauer &
Kliegl, 2001). Interference by overwriting is assumed to arise from
a loss of bindings between features and the object they belong to
(Oberauer & Kliegl, 2006). Therefore, age difference in C could
reflect weaker bindings between features and objects in older
adults, consistent with prior evidence showing that older adults
suffer from a specific binding deficit in working memory (Ober-
auer, 2005) and long-term memory (Naveh-Benjamin, Hussain,
Guez, & Bar-on, 2003).

Whereas Oberauer and Kliegl (2001) also found an increase in
the susceptibility to interference due to noise in older adults, our
study could not replicate this. However, in both studies, there was
a strong correlation of the noise and rate parameters (for which we
found an aging effect); this correlation makes it difficult to unam-
biguously assign the aging effect to one of these parameters.

Our results are in agreement with previous reports postulating
storage as an important source of differences between old adults
and young adults (Babcock & Salthouse, 1990; Oberauer, Wend-
land, & Kliegl, 2003) and differences between children and young
adults (Bayliss et al., 2005). The present modeling approach goes
beyond prior studies by describing the storage deficit in the context
of a formal model, attributing it to two sources, feature overwriting
and confusion among items. Our present results and those of two
previous studies (Gothe et al., 2012; Oberauer & Kliegl, 2001)
revealed that the storage deficits of children arise primarily from
confusion between items, whereas those of old adults arise pri-
marily from an increased susceptibility to feature overwriting. This
possibly points to different developmental trajectories of the two
interference mechanisms postulated by the IM. However, this
interpretation is only preliminary, and new studies should be
conducted to trace this issue further.

Speed of Processing

With respect to speed of processing, our aim was to examine
whether the increment from two to three updating objects further
decreased the rate, thereby testing whether the competition among
working memory representations slows down the speed of updat-
ing through the inhibition of their retrieval (Usher & McClelland,
2001). Evidence for this conjecture was only obtained for children
and young adults, not for older adults.

Generally, there was no difference between children and
younger adults in the speed of processing. However, older adults

Approximate 95% confidence intervals are given in brackets.

had a significantly slower rate than young adults. This is in
agreement with the age differences in the digit symbol test (see
Table 1), which to a large extent reflects mental speed. As men-
tioned earlier, there was a strong correlation between processing
rate and amount of noise in our study and that of Oberauer and
Kliegl (2001). Hence, developmental and aging effects in these
parameters cannot be unambiguously attributed to one of these
parameters.

Taken together, differences in processing rate between young
and old adults are in agreement with a well-established perspective
of cognitive aging. The present results support the proposal of
processing speed as one source of age differences when the avail-
able amount of time for doing a task is restricted (Salthouse, 1996).
At the same time, our results show that age differences in process-
ing speed are not sufficient to explain all age-related differences in
working memory, because the age groups differed in other param-
eters as well (Kliegl, Mayr, & Krampe, 1994; Mayr, Kliegl, &
Krampe, 1996).

Attentional Control

The results also supported the new assumption that subjects
could use part of the time during no-go steps to complete the
preceding go step. A parsimonious interpretation of the data sug-
gests that the two updating conditions differ in the time available
to carry out the updating steps; that is, subjects use the strategy of
completing go steps during the presentation time of no-go steps.
However, during no-go steps, a proportion of time reflects switch-
ing between go steps and no-go steps. This switching cost was
captured in the sc parameter. The inclusion of this new parameter
improved the goodness of fit of performance in the working-
memory updating task.

We argued that the sc parameter reflects attentional control.
Nevertheless, a detailed characterization of this switch cost is still
needed. One possibility is that sc parameter reflects an inhibition
cost; namely, the time for stopping the tendency to carry out the
updating operation. Another possibility is that it reflects a task-
switching cost, which is the time to remove the update task set and
replace it with the do not update task set stimulus. Furthermore,
the decrease of the sc parameter as a consequence of larger
memory demand was contrary to our expectations, and we cannot
give a suitable explanation for this finding. Thus, the processes
underlying the sc parameter remain unclear. Further research
should address this phenomenon in detail.

That said, the switching parameter behaved as expected for the
developmental effects. Children and older adults had larger switch-
ing times than young adults. As a consequence, young adults had

AQ:3
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more time to complete the previous go step during a no-go step.
Therefore, the higher accuracy of young adults in the go/no-go
condition is in part due to the fact that young adults had more time
for completing the preceding go step.

The developmental differences in the sc parameter are consis-
tent with earlier results. For example, some studies showed that
inhibition processes are less efficient in children and old adults
(Bjorklund & Harnishfeger, 1990; Hasher, Zacks, & May, 1999),
consistent with the interpretation of the sc parameter as reflecting
the time for inhibition of updating. The interpretation of sc in terms
of task switching is consistent with studies showing that children
and old adults have larger general switch costs (also called mixing
costs) in task-switching paradigms (for a review, see Karbach &
Kray, 2009).

Studies using formal approaches usually suffer from one limi-
tation: small sample sizes. The main reason for this limitation is
that it is necessary to collect a very rich data set from each subject
to obtain reliable estimates of the parameters; therefore, a larger
number of trials is needed. Future studies should increase the
sample size for testing whether the pattern of the parameters found
in the present study can be replicated.

Summary

The parameters of a formal working memory model were tested
to simultaneously examine storage capacity (determined by feature
overwriting and retrieval noise), processing speed (rate), and at-
tentional control (switching) as possible limiting effects of work-
ing memory capacity across life span. Our comparison of children,
young adults, and old adults revealed that the three sources of
working-memory limitation were not redundant. Rather, all of
them significantly contributed to life span differences. Many find-
ings support earlier results showing that older adults and children
had larger switching times than young adults and that older adults
are reduced in processing speed compared to young adults. How-
ever, results with respect to the two parameters modeling storage
limitations may point to differential life span trajectories. Whereas
children were found to be susceptible to confusion between items
at retrieval, old adults were specifically impaired in maintaining
bindings between features, rendering their representations more
vulnerable to feature overwriting.
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Appendix

Interference Model

The proportion of not overwritten features for one location
directly translates into the asymptotic activation level of the target
location, A;:

A= (1-cr2 (A1)

where n is number of objects in working memory (i.e., memory
demand). The activation of location i depends on the time available
for retrieving it. The activation of location 7 at time ¢ is described
by a negatively accelerated function (McClelland, 1979):

alt) = Ai(1 —exp(—1r)). (A2)
Here, a; (t) represents the activation of location i at time ¢, ¢ is the
time since the beginning of the retrieval process, and r is the

processing rate. To compute the activation of a target location after
a given time ¢, we insert Equations A1 and A2 into Equation A3:

aft) = (1=C/2)" (1 — exp(—1r)). (A3)
As a consequence of the feature overwriting of n — 1 locations, the

competitor also receives a part of its maximum activation. In
general, the level of activation of remaining competitor locations is
defined as

ai(1) = (C/2)(1=Cr2)" (1 —exp(=1r)). (A%
However, activation is noisy. The activation levels a,(t) and a,()

must therefore be interpreted as expected values of random vari-
ables. The probability that the target location i is actually the one
with the highest activation is given by the Boltzmann equation
(J. R. Anderson & Lebiere, 1998, p. 90). Therefore, the IM
expresses the probability of selecting the target location i among n
locations by that equation:

exolay 1)
Pi T S T o
2-iexp(ay/T)

where p, represents the selection probability of the target location

(A5)

i, with activation a; (omitting the time index for simplicity), in the
presence of all n locations (with activation levels a;) that are
concurrently occupied by objects bound to them in working mem-
ory. Parameter T is the noise in the system, which relates to the
standard deviation of activation by T = sqrt(6)"c/, where o is a
free parameter reflecting activation noise. In addition, the model
takes into account the possibility that locations not currently oc-
cupied by objects are erroneously retrieved due to noise. All grid
locations that are not among the n locations currently bound to
objects are assumed to have an expected activation value of zero.
The 3 X 4 grid contains 12 possible locations. Therefore, the
number of unoccupied locations is given by 12 — n. Thus, we
expanded Equation AS to

exp(ai/T)
exp(ay/T) + (n—1)exp(a;/T) + (12— n)exp(0/T)

pi =

(A6)

In the case of complete forgetting, subjects are forced to select one
of the 12 cells in the 3 X 4 grid. Hence, the chance to guess the
correct location is 1/12. Thus, accuracy of recalling each is com-
puted as

P, = 1/12+ (1 - 1/12)p!"p.. (A7)

Here, P, is the probability to recall the correct location of object i
at the end of the trial; m expresses the number of updating
operations applied to object i, p; is the probability of success in a
single updating step, and p; represents the probability to succeed in
the final retrieval, which is computed in the same way as p, but
with processing time ¢ set to infinity, because there was no time
limit for retrieval.

For the go/no-go condition, the probability to recall the location
of object i at the end of the trial was computed slightly differently.
We doubled in the model the time ¢ for an updating step followed
by a no-go step, compared with an updating step that is followed
by another updating step. The activation resulting from an updat-
ing step that was followed by a no-go updating step was therefore
given as

a,-(go,/m,,g(,)(t) = Ai(l — exp(—(Zl — sc)r)).

The parameter sc in this equation to reflect the time cost of
switching between go and no-go steps. In the go/no-go condition,
the activation for an updating step that was followed by another
updating step was modeled as for the go condition given by
Equation A3. Both activations were transferred to Equation A7.
The probability to recall the location of object i at the end of the
trial for the go/no-go condition therefore is given by

(A3a)

P, = 1/12+ (1 = 1/12)p} pi’pss (A7a)

with p}'f' representing the success probability of an updating step

that is followed by another updating step and m/ representing the
average number of go steps followed by other go steps. The second
probability, piﬁz, represents the success probability of an updating
step that is followed by a no-go step, with m2 representing the
average number of go steps followed by no-go steps.

Additionally, the IM takes into account that updating an object
that has been updated on the immediately preceding step is faster
than updating another item in working memory (Garavan, 1998;
Oberauer, 2002, 2003). To account for this assumption in the
formalization, the IM distinguishes two rate parameters, r, and r.
The rate parameter r, reflects the speed of updating in the condi-
tion with memory demand of 1, that is, when no object switch is
necessary. The rate parameter r reflects the speed of updating in
conditions with memory demand more than 1, that is, when an
object switch is necessary between every updating step and the
next.
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