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Abstract

What is the explanation for vigorous variation between was and were in plural existential
constructions and what is the optimal tool for analyzing it? The standard variationist tool — the
variable rule program — is a generalized linear model; however, recent developments in statistics
have introduced new tools, including mixed-effects models, random forests and conditional infer-
ence trees. In a step-by-step demonstration, we show how this well known variable benefits from
these complementary techniques. Mixed-effects models provide a principled way of assessing the
importance of random-effect factors such as the individuals in the sample. Random forests provide
information about the importance of predictors, whether factorial or continuous, and do so also
for unbalanced designs with high multicollinearity, cases for which the family of linear models is
less appropriate. Conditional inference trees straightforwardly visualize how multiple predictors
operate in tandem. Taken together the results confirm that polarity, distance from verb to plural
element and the nature of the DP are significant predictors. Ongoing linguistic change and so-
cial reallocation via morphologization are operational. Furthermore, the results make predictions
that can be tested in future research. We conclude that variationist research can be substantially
enriched by an expanded tool kit.
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1 Introduction

The choice of optimum statistical tool for analyzing linguistic variation has a long history of contro-
versy in quantitative sociolinguistics, beginning from the role of statistics in the study of variation
(e.g., Bickerton, 1971, 1973; Kay, 1978; Kay and McDaniel, 1979; Downes, 1984) and continuing on
to controversies over the the application of statistical methods to morpho-syntactic variables (e.g.,
Rickford, 1975; Lavandera, 1978) and discourse-pragmatic variables in the 2000’s (e.g., Cheshire,
2005). Currently, the debate centers not on whether statistical methods are appropriate, but on
the choice of which one is the best. The standard variationist tool, the variable rule program, in its
various guises as Varbrul (Cedergren and Sankoff, 1974), Goldvarb 2.0 (Rand and David Sankoff,
1990), Goldvarb X (Sankoff, 2005), or Goldvarb Lion (Sankoff et al., 2012), is a particular imple-
mentation of the generalized linear model for data that have two discrete variants (i.e. binary count
data). It is capable of modelling the joint effect of many independent (orthogonal) factors. General
statistical packages such as sas, spss and r offer comparable models.

However, developments in statistics over the past 30 years have introduced new statisti-
cal techniques, including generalized mixed-effects models, capable of modeling subtle differences
among internal and external factors (e.g., Bates, 2005; Baayen, 2008; Baayen et al., 2008; Jaeger,
2008; Johnson, 2009). Such models have come into language variation and change studies through
statistical packages as Rvarb (Paolillo), Rbrul (Johnson, 2009), and R (R Development Core Team,
2009). However, many researchers in language variation and change do not understand the differ-
ences among these statistical packages and the tools they offer, nor do they have the background
to make informed decisions about how to use different models most effectively. Indeed, the ‘tool’,
the generalized linear model vs. the generalized linear mixed model, is often confused with the
‘toolkit’, namely Goldvarb vs. spss, sas, or r.

In this paper, our quest to further understand was/were variation will lead us to explore
some new tools on the market, focussing on the concepts and ideas that make them useful to
language variation and change analysts more generally. One such tool, the generalized linear mixed
model, is implemented in many general software packages, both commercial (spss, sas) and open-
source (r), as well as in more specialist software (e.g. MLwiN, 2007; Gilmour et al., 2002). For
a cross-platform guide to mixed modeling, see West et al. (2007). We also discuss a more recent
tool, known as random forest and bagging ensemble algorithms, a relatively recent and novel type of
non-parametric data analysis. Non-parametic analyses make no assumptions about the distribution
of the population from which a sample was drawn (Baayen; 2008:77). The implementation that
we have used (which uses conditional inference trees, see Strobl et al., 2007, 2008; Hothorn et al.,
2006b) is, to the extent of our knowledge, only available in r. The appendix provides the reader
with the r code for replicating the analyses reported here. To facilitate our ancillary goal of
introducing new methods of analysis, the data are available on the first author’s website (http:
//individual.utoronto.ca/tagliamonte/Downloads/york_was.csv).

Our aim is to demonstrate that these new tools enrich the variationist toolkit by offering
important new ways for understanding language variation. While some might argue that the
usefulness of different statistical tools is more properly learned in statistics classes, it is more often
pedagogically advantageous to learn by doing something of known relevance. In this case, the
study of was/were variation using different types of statistical analyses lead us to a number of new
conclusions about the variable.1

1This paper grew out of a discussion at a workshop held at NWAV 38 in Ottawa, Canada in October 2009 entitled
Using Statistical Tools to Explain Linguistic Variation (Tagliamonte, 2009). The workshop brought together leading
proponents of a range of different statistical tools and methods in order to exchange views. This final version of the
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2 Was/were variation

Variation between was and were in past tense plural existential constructions, as in (1) can be found
in virtually any data set, in any variety of English, in any location in the world. The data upon
which we base our analyses come from the city of York in northeast England from the late 1990’s
where the following examples are typical of this linguistic variable in conversation.

(1) a. There wasn’t the major sort of bombings and stuff like that but there was orange men.
You know there /em was odd things going on. (YRK/074)

b. There was one or two killed in that area, and um, we think- . . . we think there were
firemen killed. (YRK/022)

This linguistic variable has been studied in varieties of English spanning the globe, including the
United States, Canada, United Kingdom, Australia, New Zealand and various places in between
(e.g., Britain, 2002; Britain and Sudbury, 1999; Cheshire, 1982; Christian et al., 1988; Trudgill,
1990; Eisikovits, 1991; Hay and Schreier, 2004; Hazen, 1996; Meechan and Foley, 1994; Milroy
and Milroy, 1993; Montgomery, 1989; Schreier, 2002; Tagliamonte and Smith, 1998, 2000; Trudgill,
1990; Walker, 2007). Indeed, important developments within language variation and change studies
from the 1960’s through to the present have come from analyses of this linguistic feature (e.g.,
Fasold, 1969, 1972; Labov, 1969; Labov et al., 1968; Wolfram, 1969; Wolfram and Christian, 1976).
Moreover, this phenomenon plays a key role in ongoing explorations of the relationship between
linguistic variation and linguistic theory, i.e. socio-syntax (e.g., Adger, 2006; Adger and Smith, 2005,
2007; Cornips and Corrigan, 2005), of processing effects in psycholinguistics (e.g., Bock and Miller,
1991; Bock and Kroch, 1988) and of refinements to theoretical models of language (e.g. Biberauer
and Richards, 2008; Börgars and Chapman, 1998; Henry, 1995, 1998; Meechan and Foley, 1994),
making it a key variable in the history of the discipline. Yet, despite the remarkably broad and
extensive information base on was/were variation, there are still conflicting explanations for its role
and function in the grammar of English. One of the reasons for this state of affairs is the complexity
of the data, which gives rise to many problems for statistical analysis.

3 The data

In this paper, we focus on was/were variation in its most ubiquitous context2 — past tense plu-
ral existential constructions. The particular question we begin with is what explains was/were
variation? Although typically viewed as a universal of vernacular English, an enriched statistical
toolkit will enable us to probe the question why. Beginning with the results of a standard variable
rule analysis, we then show how generalized mixed-effects modeling and modeling with the help of
random forests can lead to a more nuanced understanding of the phenomenon.

In a 1998 study of York English, all past tense contexts of the verb ‘to be’ were examined
totaling nearly 7000 tokens from 40 different individuals. Use of was was generally receding across
all areas of the grammatical paradigm, yet in plural existential constructions it was very frequent
(Tagliamonte, 1998, , 181, Table 12). Separate analysis of the 310 plural existential tokens in the
sample suggested that in this context non-standard was was increasing in apparent time. Further,
its use appeared to be the result of internal syntactic relations; however, this result was never

paper benefited from the critical eye of three astute LVC reviewers as well as detailed comments from Alexandra
D’Arcy. We thank everyone for their input.

2Present tense existentials are also frequent and widespread. However the status of There’s as a grammaticalized
or fused collocate in the language may obscure grammatical patterning (Walker, 2007, p.160-162).
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fully explored (Tagliamonte, 1998, 186). Given the building body of evidence from a decade more
of extensive study of was/were variation in plural existential constructions, now encompassing
innumerable speech communities, dialects and localities as well as many different perspectives from
different areas of the discipline, there is a considerably deeper knowledge base and understanding
with which to re-examine the York materials, exploit the full data set of 91 individuals and dig
deeper into the data on existentials.

The York English corpus provides a relatively large spoken language corpus that is socially
stratified and informal, and which represents the spoken English of a particular time and place in
the history of the language. The variety of English spoken in the city is a northern variety of British
English. Although it retains a number of local features (Tagliamonte and Roeder, 2009); it has been
previously shown to be participating in many current changes in progress in the United Kingdom
and in English generally (Tagliamonte, 2001, 2002a,b, 2003; Tagliamonte and Smith, 2006). Thus, it
offers a view on the typical patterns of English usage at the turn of the 21st century. In the present
study, the corpus was exhaustively searched for all plural past tense existential constructions. Each
context retained in the analysis was coded for the most prominent set of factors extrapolated from
the historical and contemporary literature on was/were variation in existentials. In the analyses that
follows, we include the major effects previously reported, both social (age, sex and education) and
linguistic (polarity, type of determination and proximity of the verb (was or were) to its referent).
In addition, we especially scrutinize the contrast between categorical and variable individuals as
well as the nature of the link between verb and referent.

3.1 External factors

Was/were variation has typically demonstrated sociolinguistic patterns undoubtedly due to the
fact that the two variants are clearly split between standard (i.e. were) and non-standard (i.e.
was). Not surprisingly, most studies report socio-economic effects: Was is more frequent among
working class individuals and formality increases the use of the standard form (Christian et al., 1988;
de Wolf, 1990; Eisikovits, 1991; Feagin, 1979; Hay and Schreier, 2004; Schreier, 2002; Tagliamonte
and Smith, 2000). However, there is irregularity in the findings across studies for sex differentiation
and this varies depending on the time depth of the data (see Hay and Schreier, 2004, Figure 1, p.
216). Given the non-standard status of plural existential was, the expectation is that males will
favour this form. However, in many studies females are the more frequent users. Moreover, the
intersection of age and sex is widely held to be a key component of the suite of explanatory factors.
Thus, it could be the case that interactions between social predictors have not been sufficiently
accounted for in earlier studies. This would account for the inconsistent results. Nevertheless, a
number of studies have noted increasing frequency of was for younger people and that women lead
in this linguistic development, e.g. Appalachian English (Montgomery, 1989), Tristan da Cunha
English (Schreier, 2002), New Zealand English Hay and Schreier (2004), Australia English Eisikovits
(1991). Thus, while was/were variation might appear to be a classic sociolinguistic variable, there
are indications of widespread ongoing change in progress. This leads to a (partial) reason why this
variation remains robust in contemporary varieties. Despite being socially stigmatized, apparently
there is a more universal change in progress. While this explanation is attractive, it is important to
point out that all previous studies have treated age as a factorial predictor which essentially breaks
the individuals into age groups. Thus, it could be the case that unaccounted individual differences
underlie the interpretation of ongoing change. In sum, there is still no full explanation for why
was/were variation is so productive or how it may be evolving in contemporary English if at all.
This calls for a re-examlination of the variable with an enhanced data set and an enriched analytic
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toolkit.
In keeping with our goal to promote a bridge from sociolinguistic practice to ‘general statistical

practice’, we will use standard statistical terminology. We use the term predictor as a term covering
both numerical predictors (or covariates), and factorial predictors and we refer to the values of a
factorial predictor as its levels. In sociolinguistic practice, a factorial predictor would usually be
referred to as ‘factor group’ or ‘factor’. In what follows, we represent factor names in typewriter
font, and put the levels of a factor in italics.

In our analyses, the external factors are represented by the following predictors: Sex (a factor
with levels male and female), Education (a factor with levels low and high), and Age or AgeGroup.
AgeGroup is a factor predictor with levels 20–30, 31–50, 51–70, and 70+, whereas Age is a numeric
predictor with the age in years of the individual, e.g. 21, 26, 35, 39, 53, 62 etc. One of the issues we
will put under the microscope is the standard sociolinguistic practice of partitioning an intrinsically
numeric predictor such as age, into either a set of disjunct (ordered) sets, i.e. age groups, or splits
into young, middle, old, etc.

3.2 Internal factors

Perhaps the most widely attested linguistic constraint on was/were variation is the effect of polarity,
the contrast between affirmative and negative (e.g. Anderwald, 2002; Britain and Sudbury, 1999;
Britain, 2002; Schilling-Estes and Wolfram, 1994b; Hazen, 1996). This effect is present across most
varieties, but differs in nature from one variety to the next. The pattern can be explained as
a realignment of the past tense morphological forms was and were towards a contrast between
negative and affirmative contexts. The most widespread version of this effect is the case where
weren’t occurs more often in negatives and was occurs more often in affirmatives. This was the
pattern found in the earlier analysis of York (Tagliamonte, 1998, 180), as in (2).

(2) There weren’t always bulls. Sometimes there was a few pigs, a few sheep . . . (YRK/002)

The same pattern is attested in some North American dialects in the US, e.g. North Carolina,
(Schilling-Estes and Wolfram, 1994b) and across England, including the southwest (Reading)
(Cheshire et al., 1995), the Fens in the southeast (Britain and Sudbury, 2002) and elsewhere in
Britain (Anderwald, 2002).

The second pattern is when the contrast goes in the opposite direction: non-standard was
occurs more often with negatives, i.e. wasn’t, and the standard form weren’t occurs with affir-
matives. This pattern is found in other northern Englishes, e.g. Northern England (Maryport),
southwest Scotland (Cumnock) and Northern Ireland (Portavogie and Cullybackey) (Tagliamonte,
2009) (Tagliamonte and Smith, 2000, 160–161), as in (3).

(3) a. There wasn’t any fancy puddings nor no fancy cake nor biscuits. (CMK/-)

b. There were a whole lot of them. (CMK/-)

This pattern is reported for in North America for varieties such as African Nova Scotian English
(Tagliamonte and Smith, 2000).

A third pattern is also attested. This is where the was variant occurs regardless of polarity,
i.e. no polarity effect. This is the pattern reported for New Zealand English, apparently across
the 18th and 19th centuries (Hay and Schreier, 2004, p.228) and (Chambers, 2004, p. 131), as
exemplified in (4).

(4) No, there wasn’t too many cars. There was some, but there wasn’t a great many. (WHL/S)
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Thus, remorphologization, a common process whereby syntactic phenomena develop morphological
contrasts (Joseph and Janda, 1986, 2003, 196) often appears to be an underlying explanation for
was/were variation in existentials (see Schilling-Estes and Wolfram, 1994b).

In our data set,3 polarity is coded as a factor named Polarity with as levels Affirmative and
Negative.

Another prominent constraint on this variable relates to the proximity of the verb to its
referent or to a plural element (Britain, 2002; Hay and Schreier, 2004; Tagliamonte, 1998). This
effect has been subsumed under various labels, including ‘number shift’, ‘attraction’, ‘confusion
of proximity’ among others. However, they may be explained by different underlying phenomena.
One hypothesis is that the agreement relationships between verb and referent becomes compromised
when they are distant from each other. This distance is hypothesized to hamper agreement, either
as a barrier to direct Case assignment (e.g., Henry, 1995) or for more general processing reasons
(Bock and Kroch, 1988). Thus, a crucial consideration is the nature of the underlying relationship
np. Another hypothesis predicts that the form of the verb will be influence by a close plural element.
Depending on the underlying hypothesis, this predictor must be categorized quite differently. The
examples in (5a–l) will serve to illustrate this.

(5) a. There were badgers in there. (YRK/087)

b. There was [black] clouds. (YRK/078)

c. There were [two] pubs. (YRK/012)

d. There were [the] eggs. (YRK/031)

e. There was [no] treats for them. (YRK/042)

f. There was [some funny] people. (YRK/048)

g. There was [all little] houses in there. (YRK/011)

h. There was [lots of] cinemas. (YRK/16)

i. There was [always] two films on. (YRK/003)

j. There was [four of these] houses ... (YRK/048)

k. There was [about twelve different] groups ... (YRK/077)

l. There was [still quite strong] winds in this part. (YRK/078)

m. There was [like purple and green and yellow] bruises. (YRK/049)

For proximity, we have coded the following predictors. First, Proximate1 assesses the number
of words intervening between verb and plural element. For example, in (5c) the verb and the
first plural element, two, are adjacent whereas in (5k) there is one word intervening, the adverb
about intervenes between was and twelve. As the counts of the numbers of intervening words vary
substantially (from 1 for 6 intervening words to 198 for 1 intervening word), we also considered a
binary factor Proximate1.adj with as levels Adjacent (171 observations) and Non-Adjacent (318
observations), contrasting all cases of adjacent verb to plural element sequences vs. non-adjacent
ones.

Proximate2 assesses the number of words intervening, but in this configuration, it is the
relationship between verb and referent that is relevant. For example, (5h) has two words while
(5m) has six words intervening. These two predictors, Proximate1 and Proximate2 distinguish
the position of the referent NP vs. a pluralizing element by number of words. As the counts

3The data file used for the present study has been made available by the authors. Two files are available,
YRK x R 2-11-12.csv/YRK x R 2-11-12.txt, and can be downloaded from the authors websites.
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for the different distances vary substantially (from 1 for distances 7 and 8, to 130 for distance
1), we also introduced a factor, labelled Adjacency, that distinguishes between Adjacent instances
(94 observations) and Non-Adjacent instances (395 observations), contrasting cases where the verb
is adjacent its referent, (5a, b), vs. all possible non-adjacent contexts (5c–l).4 As we shall see,
assessing which of these best accounts for the variation in the data is a key to understanding the
phenomenon.

Finally, we configure a predictor to test for the different types of determiner phrases in
which the plural referent is contained, labelled as DP Constituency in the data file. In this case,
the data were categorized into different types of dps, those with only a bare plural np, (5a),
those with a single modifying adjective, quantifier, partitive construction or combinations thereof
(5b–i), no negation, (5d), and contexts with adverbs, (5h). In this categorization of the data
the number of observations for the different factor levels (contextual types) ranges from 4 (for
quantifiers functioning as pronouns), e.g. There weren’t many, to 100 for partitive constructions
(5g), e.g. There was lots of cinemas.5

The utterance There was these two other lads was coded as follows: Proximate1 = 0; Proxi-
mate2 = 3, Prox1.adj = Adjacent; Adjacency = Non-Adjacent, DP Constituency = definite. The
different ways of encoding proximity give rise to a set of highly collinear (non-orthogonal) predic-
tors. Furthermore, neither Proximate1 nor Proximate2 and dp constituency are fully independent:
A large majority (68 out of 94) of the observations labeled as adjacent for the factor Adjacency are
bare nps (see Table 1). Such interdependencies between predictors is a common phenomenon in
sociolinguistic data sets since competing hypotheses are inevitably co-dependent. We will discuss
below what options there are to explore such co-dependent predictors from a statistical perspective.

DP Constituency Adjacent Non-Adjacent Examples

adjective 0 21 5 b
all 0 8 5 g
bare adjective NP 0 1
bare NP 68 2 5 a
combination 0 70 5 k
definite 0 29 5 d
negation 0 25 5 e
numeric quantifier 18 66 5 c
partitive 1 99 5 h
non-numeric quantifier 4 52 5 f
adverb 3 22 5m

Table 1: Contingency table for the predictors DP Constituency and Adjacency

In sum, both social and linguistic predictors are reported to impinge on was/were variation.
The social predictors suggest that the variation plays a role in the embedding of social meaning,
which is expected given the standard/non-standard dichotomy of the variants. At the same time
there is evidence for change in progress towards the non-standard variant was since younger speak-

4The label “Adjacency” contrasts with “Proximate1.adj”. The latter distinguishes between adjacency to a plural
element vs. non-adjacency. Adjectives, e.g., black in the construction ‘black clouds’ were not counted as intervening.

5Discourse markers and/or pragmatic expressions were counted as intervening words but ignored in coding for dp
constituency. Thus, contexts such as, e.g., There was like, as I say, three of us. (YRK/89), were coded as having
four intervening words for Proximate1, six intervening words for Proximate2 and partitive for DP Constituency.
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ers tend to use it more. This suggests change from below, i.e. from within the linguistic system.
Yet, the results for social predictors across studies does not always match with standard sociolin-
guistic theory. For example, the standard form were is not consistently used more often by women
and in some cases measures of formality and/or education do not go in the expected direction, i.e.
more education leads to greater usage of was. In other words, the social predictors are complex and
mixed. The linguistic predictors also present a complex picture. Polarity effects suggest an ongoing
process of remorphologization (Schilling-Estes and Wolfram, 2008) such that negative contexts take
one variant and affirmative contexts take another, yet which element takes was and which were may
vary by dialect (Tagliamonte, 2009, 2010). Proximity effects, depending on configuration, expose
the influence of syntactic structure, functional influences and/or processing. The predictor DP con-
stituency focusses in on the nature of the DP complex itself. The problem is, which of the potential
underlying explanations best fits the facts? No univariate analysis can handle the multiplex set
of intersecting predictors. Moreover, the suite of attested predictors is especially problematic due
to the fact that age patterns must be differentiated from sex and education (Meechan and Foley,
1994, p. 75). Finally, interacting and potentially local social and/or linguistic predictors must be
taken into account simultaneous with widely diffused, potentially universal internal constraints.
Assessment of the relevance and nature of these patterns requires statistical modelling:

Where statistical regularities are found in linguistic performance, they are important
as properties of language . . . there are many types of causes of statistical regularity,
and which one or ones are pertinent to a given linguistic pattern remains an empirical
question. (Sankoff, 1988, p. 152)

4 Statistical modeling

It is uncontroversial that appropriate statistical tests should be conducted in the analysis of lin-
guistic variation and change. Such tests enable the analyst to determine whether the patterns
observed in the data are the product of chance or not. Sociolinguistics was the first subfield of
linguistics to embrace the use of the generalized linear model, implemented in the Varbrul soft-
ware of the 1970’s (see, e.g. Sankoff and Sankoff, 1973; Cedergren and Sankoff, 1974; Rousseau and
Sankoff, 1978; Sankoff, 1978b,c; Sankoff and Laberge, 1978; Sankoff and Labov, 1979; Sankoff and
Rousseau, 1979; Sankoff, 1982, 1985, 1978a). An early general software package for the generalized
linear model was glim (Nelder, 1975). Since then, the generalized linear model has become avail-
able in any of the major statistical software packages, including sas, spss, and r. In the present
study, we consider two new tools in statistics that have reached maturity in the last decade: the
generalized linear mixed-effects model and random forests. We believe both tools have important
advantages to offer for the analysis of sociolinguistic data.

Sociolinguists find themselves confronted with many data related problems. Among these is
the well known fact that the data are almost always more sparse than is desirable and which is
typically unevenly distributed across individuals, social groups and linguistic contexts. Moreover,
the data always displays a great deal of variation, both inter-individual and intra-individual. Many
data sets come with categorical individuals, individuals without any variation in the phenomenon
of interest, and inevitably the data are characterized by many unfilled, empty cells and inevitably
cells with just one observation (singletons). As a consequence, gauging the weight of the multiple
simultaneous, multi-dimensional, and multi-causal constraints operating on linguistic variation is
not a trivial matter. A case in point is the 1998 data on was/were variation. The subset of the data
upon which we focus in this analysis — plural existentials — comprised only 310 tokens ranging
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from 1–29 tokens per individual (Tagliamonte, 1998).
In this arena, a generalized linear model is ideal for handling many kinds of data sets. How-

ever, the new mixed-effects models provide the researcher with an even more powerful and principled
way of dealing with different kinds of predictors typically encountered in sociolinguistic data sets.
Consider the individual speakers or writers typically sampled in sociolinguistic studies. Such indi-
viduals are generally sampled from larger populations of similar individuals, and are selected to be
representative for these larger populations (e.g., the city, region or dialect individuals come from).
This brings us to an important distinction in the statistical analysis of factorial data (i.e. data that
can be categorized into levels or factors). There is an important difference between fixed-effect and
random-effect factorial predictors. An example of a fixed-effect factor is the sex of the individual,
which has exactly two levels (female versus male) and exhausts all possible levels for this predictor,
at least from a biological perspective. Random-effect predictors, by contrast, have levels that con-
stitute only a subset of the possible categories available in the population. Individuals (and also
words, e.g., nouns, verbs or adjectives) are typical examples of random-effect factors. If, in a sta-
tistical analysis, a random-effect predictor is analysed as if it were a fixed-effect predictor, then the
conclusions reached will only be valid for the individuals and words sampled. Thus, if the sample
comprises 8 individuals the statistical model will be valid for only those 8 individuals. Conclusions
do not automatically generalize to the relevant populations of interest. For generalization, p-values
may be too small and misleading.

A random-effect factor such as Individual can be treated as fixed only when each individual
contributes a single observation. In other words, for data sets that sample just one utterance from a
given individual and that record only a single instance of a given utterance, the distinction between
fixed and random factors is not at issue. In this case, the traditional generalized linear model is
an excellent choice. Perhaps the best example of such a study is Labov’s famous department store
research where many people were asked a question that lead them to say ‘fourth floor’ (Labov,
1972a) so that variation in the pronunciation of [r] could be analyzed.

However, most sociolinguistic studies are not designed in this way. Instead, there are a
limited number of individuals and (hopefully) many tokens from each individual. This presents a
problem for statistical modelling because as soon as a given individual contributes more than one
observation, the individual him or herself becomes a source of variation that should be brought into
the statistical model. To see this, consider a group of individuals from the same age group, with
the same sex and the same education level. Within such a socially homogeneous group,it is possible
that some individuals will use the was variant more often than others. The rate of a linguistic
variant such as was may differentiate individuals with their own idiosyncratic preferences within
the broader group.

If the individual is not considered as a predictor in the model and the individuals in the data
use a variant with widely diverging individual probabilities, two things may go wrong. First, we may
miss out on the opportunity to better understand the data, and to explain more of the variation.
For example, a variable that remains constant across a population, i.e. no effect of individual
variation, will require a different interpretation than a variable where the individuals exert so much
of an effect than none of the other predictors are significant! Second, the data will have correlated
errors (deviances). To see this, consider again our group of individuals that are homogeneous
with respect to Age, Education, and Sex. All observations for the individual strongly favoring was
will have large deviations from the group mean. Conversely, for an individual strongly disfavoring
was, large deviations in the opposite direction will be present. Standard practice in variationist
methodology is to examine cross-tabulations of internal and external predictors for each individual
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in the data sample in order to evaluate what effect each individual may have.6 Crucially, mixed-
effects modeling allows the researcher to incorporate some of these insights straightforwardly into
the statistical model.

Figure 1 illustrates the second problem for a classic generalized linear model (left panel)
and compares this with a generalized linear mixed model (right panel) fitted to the was/were
data. The basic idea here is that some individuals behave consistently (favoring or disfavoring a
particular variant) in ways which cannot be explained as resulting from the combination of social
characteristics they are coded for. We will discuss the details of these models below. Here, we
draw attention to the distribution of the deviance residuals. The deviance residuals concern the
difference between the observed and predicted values.7 Each box and whiskers plot in Figure 1
represents the deviance residuals for a given individual, labeled a through p. The box represents
the interquartile range (50% of the data points), the whiskers extend to 1.5 times the interquartile
range, and circles represent individual outliers. Ideally, the boxes should be centered symmetrically
around the zero line. For many individuals, this is the case, even though the medians (represented
by solid black dots) tend to be relatively far away from zero, with subject g as the only exception.
What is of special interest to us here are exceptions such as individual b (all her deviance residuals
are negative) and individual h (all her deviance residuals are positive). Both these individuals are
extreme, in that individual b always uses were, and individual h always uses was. A model ignoring
this variation among the individuals fails to fit the data of the individuals accurately. As we shall
see below, the model was informed about Adjacency, Polarity, and Age, but these predictors do not
provide enough information about the preferences of individuals. Given the information it has, the
model does not expect such a strong preference of individual b for were, nor such a strong preference
of individual h for was. For individual h, it underestimates her preference for was, hence the positive
residuals. For individual b, it underestimates her preference for were, hence the negative residuals.

It is only when the individual is brought into the model as an explanatory factor that it
becomes possible to correct for this systematic prediction error of the standard logistic model. The
right panel of Figure 1 shows that the estimation errors of the corresponding mixed model are much
reduced, thanks to the inclusion of individual as a (random-effect) predictor in the generalized linear
mixed model: The median deviances are closer to zero, indicating that a better fit of the model to
the data has been obtained. Using the standard logistic model might have led to the exclusion of
extreme individuals in a sample; however, the mixed-effects model enables the analysis to proceed
further.

Note that the mixed model has a few more extreme outliers for individuals k and l, but then
most of the points (concentrated in or close to the black dots) are much closer to zero. In other
words, a slight increase in deviance for a few points is offset by a slight decrease in deviance for
lots of points. The latter is better.8

Nevertheless, in some cases even mixed-effects models can be challenged by the often highly
unequal numbers of tokens involved for different combinations of predictors. Some stress for the

6There are strategies and even a rich literature on the anomalous behaviours of individuals inside community-based
samples (e.g. lames (Labov, 1972b), oddballs (Chambers, 1998, p. 94)), and strategies have been proposed to find and
evaluate the effect such individuals may have on the data (van de Velde and van Hout, 1998; Guy, 1980). Although
mixed-effects models can bring individual differences into the statistical model, they do not protect protection against
distortion by atypical outliers. Model criticism is an essential part of good statistical practise, irrespective of whether
a mixed-effects approach is adopted.

7Technically speaking, the deviance residual is the signed square root of the contribution of an observation to the
overall model deviance. With Gaussian models, the errors are normally distributed. In the statistical models under
discussion here, the deviances are non-normal (non-Gaussian), and are expressed on the logit scale.

8When there is no box for an individual it means that the interquartile range is restricted to a single value (so
very little variation in values).
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Figure 1: Deviance residuals for a standard logistic model (left) and a logistic mixed model (right)
for individuals contributing at least 10 utterances. Each boxplot should be centered around zero
(highlighted by the horizontal line).

mixed model is clearly visible in the right panel of Figure 1: In the ideal situation a model’s
underlying assumptions are appropriate for the data and the medians should all be close to zero.
The divergences from zero indicate that some of the assumptions underlying the mixed-effects model
are violated.

Furthermore, the kind of interactions that a (mixed-effects) generalized linear model can
handle effectively may for some data sets be too restricted for the highly imbalanced cells typical
of sociolinguistic data. As we shall see, this is where conditional inference trees and random
forests provide a complementary technique that may provide insights that are sometimes difficult
or impossible to obtain with the linear model.

4.1 A generalized linear model

Table 2 presents the results of a variable rule analysis. It is a standard generalized linear model
with four predictors: Polarity, Adjacency, Sex, and age. Adjacency taps into the proximity
complex through a binary factorial predictor with as levels Adjacent vs. Non-Adjacent, as discussed
above. above. AgeGroup is configured with four levels: 20–30, 31–50, 51–70, and 70+. The response
variable is the binary choice between was and were. The model seeks to predict which variant is
used, and considers was as a ‘success’, and were as a ‘failure’. In other words, percentages and
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probabilities are calculated from the perspective of was, and evaluates how often was was used
compared to all instances of was and were jointly. We consider a model with main effects only,
excluding interactions. In statistics, such a model is referred to as a simple main effects model.

Factor Levels Successes Counts Perc Probs Weight

1 Polarity Affirmative 270 455 59.34 0.5852 64.46
2 Polarity Negative 10 34 29.41 0.3054 36.48
3 Adjacency Adjacent 40 94 42.55 0.3655 42.49
4 Adjacency Non-Adjacent 240 395 60.76 0.5185 57.79
5 Sex F 161 270 59.63 0.4761 53.55
6 Sex M 119 219 54.34 0.4057 46.51
7 AgeGroup 20-30 62 77 80.52 0.7061 70.61
8 AgeGroup 31-50 36 62 58.06 0.4827 48.27
9 AgeGroup 51-70 112 208 53.85 0.4208 42.08

10 AgeGroup 70+ 70 142 49.30 0.3804 38.04

Table 2: Variable rule analysis, sum coding, all individuals

Table 2 provides the following information: The predictors considered in the analysis (Fac-
tors), their levels (Levels), the number of tokens (Counts), the number of cases with was (Successes),
the percentage of such cases (Perc), the corresponding probabilities as estimated by the model
(Probs), and the factor weights (Weight). This kind of output is familiar variable rule analyses.
Now, let us consider the results from a general statistical perspective.

The results in Table 2 are based on a series of decisions that jointly define a very specific
instantiation of the generalized linear model. An important distinction that is crucial to under-
standing the reportage in Table 2 is that between unordered and ordered factors. Unordered factors
are factors with factor levels that cannot be ordered along a scale of magnitude. Polarity, Adja-
cency, and Sex are unordered factors. By contrast, Age is an ordered factor as its levels, 20–30,
31-50, 51–70 and 70+ are on a scale from small (young) to large (old).

For unordered factors, the model uses what is known as sum coding. As a consequence, the
factor weights (in the column Weight in Table 2) are differences from the grand mean, repositioned
around 50%. For ordered factors, variable rule analysis implements polynomial contrasts. Polyno-
mial contrasts are a good choice when the (ordered) predictor levels are equally spaced and have
equal numbers of observations. The weights in Table 2 show decreasing probabilities for was with
age.

Tables such as Table 2 do not report the coefficients of the underlying generalized linear
model, which are on the logit (log odds) scale. This tradition makes a variable rule analysis stand
out from how the same kind of models are generally reported in domains of inquiry other than
sociolinguistics.9

What information does Table 2 reveal? First, the predictor Polarity, which has two levels,
Affirmative and Negative, receives a weight greater than 50% for Affirmative, and a weight smaller
than 50% for the level Negative. This indicates that according to the model the use of was is more
likely for affirmative polarity, and less likely for negative polarity. This prediction of the model fits
well with the observed counts of successes (uses of was) given the total numbers of observations.
For affirmative polarity, 270 out of 455 observations have was, or 59.3%. For negative polarity, only

9In fact, this tradition withholds information from the analyist. For instance, the coefficients estimated for ordered
factors can then be used to evaluate whether trends across the ordered factor levels are linear or curvilinear.
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10/34 = 29% of the observations support was. The column labelled ‘Probs’ lists the proportions
predicted by the model given the factor weights it estimated. It is easy to see that the predicted
proportions are quite similar to the observed percentages. For the predictor Adjacency, the second
unordered predictor in the model, the likelihood of was is slightly greater for non-adjacent contexts,
and slightly smaller in adjacent contexts. For the predictor Sex, the factor weights are both close
to 50%. As we will observe below that this predictor does not reach significance. Finally, for
the ordered factor AgeGroup, we see that as we move down the ordered predictor levels, from
the youngest to the oldest group, the factor weights (and the observed percentages and predicted
proportions) of was decrease.

Table 3 presents the results of an analysis using the same statistical tool, the generalized
linear model for binary response variables, but now we apply it in a slightly different way. First,
instead of examining the effects of predictors on the percentage scale, we consider effects on the
log odds scale. On the percentage scale, the 50% mark is the pivotal value, with values greater
than 50% indicating a trend in favor of the use of was, and values below 50% indicating a trend
against was and in favor of its counterpart, were. On the log odds scale, the value of zero takes
over this pivotal role. Positive values now indicate support for was, and negative values support for
were. Second, instead of using sum coding, we now make use of treatment coding. With treatment
coding, one predictor level is selected as the baseline, the so-called reference level. R, when not
explicitly instructed otherwise, will select as reference level that predictor level that is the initial
one in the alphabetically sorted list of factor levels. For Polarity, the reference level is Affirmative,
as ‘affirmative’ precedes ‘negative’ in the alphabet. For Adjacency, the reference level is Adjacent,
and for Sex, it is F(emale). The reference level for AgeGroup is 20–30. Given a reference level,
treatment coding instructs the generalized linear model to estimate the differences between the
other predictor levels of a given predictor, and that predictor’s reference level. For Polarity, it
will estimate the difference between the mean log odds for Non-Adjacent observations and the mean
log odds for the Adjacent observations. For Sex, it will calculate the difference between the mean
for the males and the mean for the females.

Which kind of dummy coding is selected is to some extent a matter of personal preference.
A first advantage of treatment coding is the coefficients it estimates are well interpretable for
unbalanced datasets. For unbalanced designs, dummy coding with sum coding has as a consequence
that the interpretation of the coefficients as differences from the group mean is only approximately
correct. As a result, the factor weights as listed in Table 2, which are derived from these coefficients,
are also approximations. A second advantage of treatment coding is that the coefficients remain
transparent when interactions with other factors and with covariates are included in the model
specification. We return to interactions below.

The widely varying tokens (number of observations) for the different cells defined by Adja-

cency, Polarity and AgeGroup make treatment coding a natural choice for our data. For instance,
there are 77 observations for the youngest age group, and 62, 208, and 142 for the subsequent age
groups. For such an unbalanced dataset, the coefficients of the model are much easier to interpret
than the coefficients obtained with sum coding and with polynomial contrasts for ordered factors
(see, e.g., Venables and Ripley, 2002).

How do we interpret tables such as Table 3? The first row of this table lists the intercept,
which represents the reference levels of all factorial predictors in the model simultaneously. In
other words, the estimate for the intercept is the mean log odds for the youngest age group (20–
30), Affirmative Polarity, Adjacent Adjacency, and Females. This estimate is positive, indicating
that for this combination of predictor levels, was is used more often than were. The second column
presents the standard error associated with this estimate. The standard error is a measure of the
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Estimate Standard Error Z p

Intercept 1.0509 0.3774 2.7847 0.0054
Polarity=Negative -1.1656 0.4011 -2.9062 0.0037
Adjacency=Non-Adjacent 0.6257 0.2409 2.5975 0.0094
Sex=Male -0.2862 0.1951 -1.4671 0.1423
Age=31-50 -0.9457 0.3996 -2.3668 0.0179
Age=51-70 -1.1962 0.3253 -3.6774 0.0002
Age=70+ -1.3645 0.3371 -4.0479 0.0001

Table 3: Generalized linear model with only main effects, using treating coding, all individuals

uncertainty about the estimate. The larger this uncertainty, the less confidence should be placed
in the estimate. The third column presents the Z-score, obtained by dividing the estimate by its
standard error. This score follows a normal distribution, allowing us to calculate the probability
(listed in the fourth column) of observing a more extreme value for the coefficient. Formally, this
test asks whether the intercept is significantly different from zero, i.e., a 50-50, random use of the
two forms. Since for the intercept, this probability is small, we can conclude that in all likelihood
young females use was significantly more often than chance in Affirmative Adjacent contexts.

The next row in Table 3 shows that observations with negative polarity have a mean log
odds that is -1.17 below that of the intercept. The standard error and its associated Z-value show
that this difference reaches significance, p = .0037. The group mean that we can calculate from
this, 1.0509-1.1656 = -0.1147, is calibrated for the young age group, for females, and for Adjacent
Adjacency. In this case the intercept is the groups mean for positive polarity, for yongsters, for
adjacent adjacency, and for females. When we only change polarity, we get the group mean for
negative polarity, youngsters, adjacent adjacency, and females. The second row of the table tells
us that the difference between these two group means is significant.

In the next line only Adjacency changes from Adjacent to Non-Adjacent, so we get young +
women + positive + non-adjacent. This illustrates that young women in in affirmative polarity
use was less often in Non-Adjacent constructions than in Adjacent constructions. This contrast is
also significant. The next predictor, Sex, comes with a contrast suggesting that males use was less
frequently than do females. However, the large standard error and the low Z-value suggest that
this small difference is not significant.

Finally, the effect of AgeGroup, a predictor with four levels, appears in the table with three
contrasts: There are three predictor levels other than the reference level (the youngest age group),
and each of these factor levels is contrasted with the reference level, producing three differences
between group means. As the age group increases from 31–50 to 70+, the magnitude of the
estimated contrast increases. From the last column, we can conclude that each of these three age
groups uses was significantly less often than the youngest age group.

What is important to realize is that the standard variable rule analysis with sum coding
and our re-analysis using treatment coding make exactly the same predictions, even though these
predictions are arrived at in slightly different ways. Figure 2 illustrates this graphically. The left
panels present the partial effects of the predictors Adjacency, Polarity, and AgeGroup in the model
using treatment coding. The partial effect of a predictor is the effect of that predictor when all
other predictors in the model are held constant, where possible at a typical value. For factorial
predictors, the ideal reference level is the one that comprises the majority of observations. In this
way, graphical representations of the data will represent the effects calibrated for the largest possible



Was/were as a case study for statistical practice 14

number of data points (which, with many cells, might be a small minority of all data points.) For
numerical covariates, it makes sense to choose the median of that covariate as typical value.

The upper left panel shows the partial effect of adjacency for females in the 51–70 age group,
for affirmative polarity. This plot was obtained using the plot facilities for logistic regression models
in the rms package of Harrell (2001), which also adds confidence intervals around the group means.
Now consider the lower left panel, which presents the partial effect for AgeGroup. The likelihood
of was decreases as age increases. The pattern as shown in this panel is calibrated for affirmative
polarity, non-adjacency, and females. For adjacent constructions, we know from the top left panel
that the likelihood of was decreases. Hence, to make the bottom left panel precise for adjacent
constructions, all four points have to be shifted down according to the amount of contrast between
the adjacent and non-adjacent groups in the top left panel.10 This illustrates what it is to plot a
partial effect: The effect is calibrated for specific values of all other predictors in the model. If the
value of one of the other predictors changes, the points for the predictor under consideration must
be re-calibrated as well.

The right panels of Figure 2 present the partial effects for the standard variable rule model.
There are no adjustments listed underneath each panel. This is because in this model all effects
are positioned around the grand mean. In the upper right panel, the group means for the two
levels of Adjacency show the same difference as in the upper left panel, but they are positioned
differently. The group means in the left panel represent actual cells in the design, namely, adjacent
and non-adjacent Adjacency for females in the 51–70 AgeGroup under affirmative polarity. Because
the group means in the upper right panel are calibrated with respect to the grand mean, they do
not represent any of the cells in the design. All the other differences between the levels of other
factors are averaged out. In other words, the right panels summarize the general trends, the left
panels present the same trends but position them specifically anchored with respect to specific cells
in the design.

An important difference between sum coding and treatment coding arises when effects are
evaluated on the proportion scale. On the logit scale, differences between any two factor levels are
identical irrespective of which factor coding system is used. However, when group means are not
represented on the logit scale, but on the proportion scale, i.e., when the logits are transformed
into proportions, the two coding systems yield slightly different results.

Underlyingly, irrespective of which kind of dummy coding is used, contrasts are estimated on
the logit scale. Because the transformation from logits to proportions is non-linear, the magnitude
of a contrast on the proportions scale will vary between sum coding and treatment coding. This
is illustrated in Table 4 for the case of the youngest age group producing adjacent sentences,
comparing the effect of Polarity on the logit and back-transformed proportions scale (as in a
Goldvarb analysis). The difference here is small, but depending on the data, it can be quite
substantial. This nonlinearity also affects the confidence intervals for the group means, which on
the logit scale are symmetrical around the mean, but, as can be seen in Figure 2 for negative
polarity, can become noticably asymmetrical on the proportions scale.

The two coding systems have both advantages and disadvantages. For balanced datasets,
sum coding and polynomial contrasts for ordered factors make it possible to present effects as ad-
justments from a grand mean, which fits well with the formulation of variable rules in Cedergren
and Sankoff (1974), for instance. Unfortunately, for unbalanced data sets, the mathematical inter-
pretation of the coefficients is less straightforward, although for actual practice the differences are

10On the underlying log odds scale, this statement is precise and correct. Because the transformation from log odds
to proportions is nonlinear, the effects of the main effects on the proportion scale are approximate when compared
across the three panels.
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Figure 2: Effects of the predictors for a standard variable rule analysis with sum coding (right),
and partial effects of the same predictors in a logistic model with treatment coding (left).
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Coding Scale Affirmative Negative Difference

Treatment coding logit 1.0509 -0.1147 1.1656
Sum coding logit 0.3440 -0.8216 1.1656
Treatment coding proportion 0.7409 0.4714 0.2696
Sum coding proportion 0.5852 0.3054 0.2797

Table 4: Contrasts on the logit scale are identical for sum and treatment coding, but after back-
transforming to proportions, differences based on centered factor levels (sum coding) are larger. For
treatment coding, the contrast in polarity is that for the youngest age group (20-30) and adjacent
sentences.

probably benign.
The advantage of treatment coding is that coefficients are well interpretable also for unbal-

anced designs, as often encountered when studying language. Furthermore, coefficients remain
transparent when interactions and covariates are allowed into the model. The present data set,
as with most sociolinguistic data sets, is in many ways highly unbalanced. As we shall see below,
inclusion of both covariates and interactions in the model leads to improved prediction accuracy.
Thus, we will use treatment coding for the remainder of this study.

4.2 Interactions and covariates

The model introduced in the preceding section (Tables 1 and 2) uses a factorial predictor, AgeGroup,
to represent the age of the individuals, i.e. the predictor is divided into categories, a.k.a factors
or levels. The use of a factorial predictor to represent a numeric predictor is standard practice in
language variation and changes studies; however this has several disadvantages. One disadvantage
is a potential loss of power, i.e., the likelihood of detecting an effect that is actually present in the
data decreases (see, e.g. Baayen, 2010, and references cited there). Another disadvantage is that
the cut-off points for the different age groups may be somewhat arbitrary, however carefully they
may have been devised.

In Figure 2, the bottom panels indicate that the effect of AgeGroup is non-linear: The dif-
ference in the probabilities for the youngest age groups is larger than the corresponding difference
for the oldest two age groups. This kind of trend, with an effect that becomes smaller with each
step, is a negative decellerating trend. When replacing AgeGroup by Age, we should not expect to
be able to model the negative decellerating effect of Age simply with a straight line

y = β0 + β1x. (1)

(In this equation, β0 is the point on the vertical axis at which the line intersects the vertical axis,
and β1 is the slope of the line.) Instead of the formula for a straight line, we need is a mathematical
formula that can faithfully represent the observed curvature. In the present case, the curve looks
like it might be part of a parabola. (In nature, the trajectory of a bouncing ball between two points
where it touches the ground is part of a parabola.) Mathematically, a parabola is described by a
quadratic polynomial, which adds a second parameter and a quadratic term to the equation of a
straight line, as follows:

y = β0 + β1x+ β2x
2. (2)

The coefficient β2 is referred to as the quadratic coefficient as opposed to β1, the linear coefficient.
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Figure 3: Linear and Quadratic fits to a non-linear trend (proportion was as a function of age
group, compare the lower panels of Figure 2.

Figure 3 illustrates the difference between a linear (solid line) and a quadratic fit (dotted line)
for the trend across the four age groups visible in the lower panels of Figure 2. When modeling
the effect of AgeGroup as a factor, no constraints are placed a priori on what kind of pattern the
contrasts should follow. Some might be larger than the reference level, others smaller. When
moving from an ordered factor (with imposed levels) to the underlying covariate, we may discover
that the linear model is too restrictive. This can be seen in Figure 3, where the values on the
horizontal axis range from 1 to 4, and the values on the vertical axis represent the proportions of
was responses. The solid line represents a linear fit to the data, using for simplicity a standard
Gaussian model. The dashed line represents a model with a quadratic polynomial. The amount
of variance explained increases from 0.83 to 0.97. The addition of a second parameter allows us to
model the observed trend more precisely.

Let us now test the difference between using a linear model for the factor AgeGroup and a
quadratic model for the covariate Age expressed in years), using logistic regression. Before we do
so, recall that thus far, our statistical models have examined the data with only main effects. Such
simple main effects models are correct only if each predictor has an effect that is independent of
the effects of the other predictors. For any given data set, this assumption may or may not be
appropriate. It turns out that the effect of Age differs for affirmative and negative polarity, and
that a simple main effects model is too simple.

Table 5 shows the coefficients of a model that includes linear and quadratic terms for Age,
and that allows both these terms to interact with Polarity. (In this model, the predictor Sex is
not included, because the preceding analyses indicated it does not reach significance.) The easiest
way to understand what the model does is to inspect the visual representation of the interaction of
Age by Polarity presented in Figure 4. The black lines represent the effect of Age for affirmative
polarity and its 95% confidence intervals. As Age increases, the probability of was decreases. The
gray lines represent the effect of Age for negative polarity. Since there are only 34 observations with
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Estimate Standard Error Z p
Intercept 2.2779 0.7886 2.8887 0.0039
Adjacency=Non-Adjacent 0.6508 0.2412 2.6983 0.0070
Polarity=Negative -17.3824 9.2231 -1.8847 0.0595
Age (linear) -0.0793 0.0301 -2.6339 0.0084
Age (quadratic) 0.0006 0.0003 2.0916 0.0365
Polarity=Negative : Age (linear) 0.7171 0.3644 1.9677 0.0491
Polarity = Negative : Age (quadratic) -0.0072 0.0035 -2.0609 0.0393

Table 5: Estimated coefficients, standard errors, Z and p values for a generalized linear model with
an polynomial (degree 2) for Age in interaction with Polarity, using treatment coding.

negative polarity, compared to 455 observations with affirmative polarity, the confidence intervals
are much wider, and no definite conclusions should be drawn from the analysis. However, the trend
that we see in Figure 4 is that in utterances with negative polarity, was is favored by individuals
around 50 years of age, and disfavored by the youngest and oldest individuals. This is a classic age-
grading pattern and it shows us that affirmative and negative contexts reflect socially independent
phenomena in this speech community.

Now consider the interpretation of the coefficients listed in Table 5. The intercept repre-
sents Adjacent Affirmative construction for individuals with Age zero. There are, of course, no
such individuals in our sample. All data points are located far to the right of the vertical axis.
Nevertheless, mathematically, the regression curves will intersect the vertical axis at some point,
and for the Adjacent Affirmative constructions, this point is 2.28. The positive and significant
contrast coefficient (0.65, p = 0.007) for Adjacency=Non-Adjacent indicates that the probability
of was increases for non-adjacent constructions compared to adjacent constructions (for age zero).
The third row of the table indicates that for negative polarity, the likelihood of was decreases sub-
stantially (−17.4, p = 0.06), again for age zero. (There are few data points here, so the standard
error is large and the effect does not reach full significance.) For ages greater than zero, the linear
and quadratic coefficients for Age (rows four and five) specify the parabola for affirmative polarity.
They define the black curve in Figure 4. On the log-odds scale, this curve is part of a parabola.
After transforming log-odds into the probabilities shown on the vertical axis, the curve remains
U-shaped, but it is no longer a perfect parabola.

The last two rows of Table 5 provide treatment contrasts that change the black curve in
Figure 4 into the gray curve in Figure 4. On the logit scale, the black curve is given by

log odds = 2.2779− 0.0793 ·Age + 0.0006 ·Age2, (3)

and the gray curve for negative polarity is given by

log odds = [2.2779− 17.3824] + [−0.0793 + 0.7171] ·Age + [0.0006− 0.0072] ·Age2. (4)

Note that all three coefficients in (3) are adjusted for negative polarity: the intercept, the linear
coefficient of Age, and the quadratic coefficient of Age. When the parabola defined by (4) on the
logit scale is transformed to the probability scale, the gray curve of Figure 4 results.

The model summarized in Table 5 invests no less that 5 parameters for the modeling of
Polarity and Age. Does this investment pay off by leading to a model that fits the data better?
This question can be answered in two ways. First, we can compare the present model with a much
simpler model with simple main effects for Adjacency, Polarity, and Age. This model requires
only four parameters: an intercept, two contrast coefficients, and one slope (see Table 6).
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Figure 4: Partial effect of Age for sentences with affirmative (black) and negative (gray) polarity,
with 95% confidence intervals.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.0035 0.3777 2.6567 0.0079
AdjacencyNon-Adjacent 0.6551 0.2390 2.7407 0.0061
PolarityNegative -1.1494 0.3964 -2.8993 0.0037
Age -0.0197 0.0051 -3.8552 0.0001

Table 6: A main effects model with Adjacency, Polarity, and Age as predictors.

However, upon inspection it turns out that the residual deviance for this simpler model,
631.28, exceeds the residual deviance of the complex model, 616.76, by 14.52. This reduction in
deviance follows a chi-squared distribution with as degrees of freedom the difference in the number
of parameters, 3. The associated p-value, 0.002 obtained with this analysis of deviance indicates
that the more complex model provides a significantly better goodness of fit. (For the example code
in R, the reader is referred to the appendix.)

Second, we can also compare the model of Table 5 with the original model with Adjacency,

Polarity, Sex, and AgeGroup as predictors. That model also invested 7 coefficients (see Table
3). In this case, an analysis of deviance cannot be applied because both models invest the same
number of parameters, and also because the models to be compared are not nested. For situations
like this, it is often useful to use the index of concordance C. This index is a generalization of the
area under the Receiver Operating Characteristic curve in signal detection theory (for examples,
see, e.g., Harrell, 2001; Baayen, 2008). It measures how well the model discriminates between the
was and were responses. When C = 0.5, classification performance is at change, values of C ≥ 0.8
indicate a good performance. For the simple main effects model with Adjacency, Polarity, Sex,
and AgeGroup, C = 0.659. For the model of Table 5, there a slight improvement to C = 0.66.
For both models, however, the low value of C is a signal that the fit of the model to the data is not
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particularly good, which means that we have not yet arrived at a satisfying model to help interpret
and explain the variation. One possibility is that there is simply a lot of noise in the data, and
that this is the best we can do. Alternatively, it is possible that we are neglecting to enlist an
alternative, and accessible, statistical tool, and that a much better fit is actually within reach.

4.3 Generalized linear mixed-effects modeling

In our analyses so far, we have not considered the individuals in the sample. These individuals
will undoubtedly differ in their own personal preferences for was versus were. The question is,
to what extent? Since the individuals contributing to the current data set are a small sample (83
individuals) of the locally born population of the city of York, Individual is a random-effect factor.
Random-effect factors differ from fixed-effect factors such as Adjacency or AgeGroup in that the
latter have a fixed and usually small number of factor levels that are repeatable. Repeatable in this
sense contrasts Adjacency, which would have the very same factor levels in a replication study,
namely Adjacent versus Non-Adjacent, with Individual, which in a new random sample would
likely contain an entirely different set of individuals.

Traditional variable rule analysis can only model Individual as a fixed effect in the existing
data set. This has several disadvantages compared to mixed-effects models. First, it is not possible
to generalize to the population that the data set is meant to represent. The model pertains only
to the individuals who happened to be included in the sample.

Second, the estimated effects for the individual do not benefit from shrinkage. An individual
evidencing an extreme preference for were in one random sample of elicited utterances is likely to
show a reduced preference for were in a second random sample. This is an instance of the general
phenomenon of regression towards the mean (often illustrated with the example that sons of very
tall fathers tend to be less tall than their fathers). Shrinkage anticipates regression towards the
mean, providing estimates for the individual differences that are more realistic, more precise, and
hence afford enhanced prediction for replication studies with the same individuals.

Third, mixed models offer a flexible way of taking into account not only that individuals
may have different preferences, but also that their sensitivity to, for instance, Polarity, may differ
significantly. We return to this point in more detail below.

As a first mixed-effects model for our data, we begin with the model of Table 5 and simply add
in Individual as a random-effect factor, allowing the intercept to be adjusted for each individual
separately. This model with by-individual random intercepts assumes that the effects of Adjacency
and Polarity are the same across all individuals, but allows individuals to have different baseline
preferences for was versus were. Table 7 presents the coefficients for Adjacency, Polarity, and
Age and their associated statistics.11

What is new in the mixed model is an additional parameter that specifies how variable the
individuals are with respect to their baseline preferences. This parameter, a standard deviation,
was estimated at 1.33. This standard deviation squared is the variance of the individual baseline
preferences.

Does the addition of this new parameter lead to an improved goodness of fit? This question
is answered by comparing the original model (refitted with an orthogonal polynomial) with its
mixed counterpart, using an analysis of deviance test. As the deviance is substantially reduced,

11Here and in the analyses to follow, we have used orthogonal polynomials for Age, instead of a simple, ‘raw’
polynomial. An orthogonal polynomial reduces collinearity, which for this data turns out to be essential to allow the
mixed model to achieve a good fit to the data. As a consequence, the estimates of the coefficients differ from those
listed in Table 5 for the non-mixed model, the reason being that these coefficients are mathematically different from
the coefficients of a parabola. However, jointly, they predict the same curve.
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Estimate Standard Error Z p

Intercept -0.0712 0.3027 -0.2353 0.8140
Adjacency=Non-Adjacent 0.7389 0.2835 2.6066 0.0091
Polarity=Negative -3.2308 1.2752 -2.5337 0.0113
Age (linear) -10.7868 4.3684 -2.4693 0.0135
Age (quadratic) 8.3213 4.4844 1.8556 0.0635
Polarity=Negative : Age (linear) -21.9671 20.0015 -1.0983 0.2721
Polarity = Negative : Age (quadratic) -75.3279 32.2420 -2.3363 0.0195

Table 7: Coefficients of a generalized linear mixed-effects model with random intercepts for individ-
uals (standard deviation 1.3345), using treatment coding and an orthogonal polynomial of degree
2 for Age.

from 616.76 to 565.02, it is not surprising that the mixed model provides a significantly better fit
(X2

(1) =51.742, p < 0.0001). The index of concordance C increases substantially to 0.87, well above
0.8, providing statistical validation of a good fit. Finally, we have achieved an acceptable statistical
model.

It is an empirical question whether by-individual random intercepts (or any further more
complex random-effects structure) are justified for a given data set. When only a single observation
is available per individual, it is not possible to include the individual as a random-effect factor. In
that case, a standard generalized linear model suffices. However, for many practical situations,
collecting only a single instance from each individual is prohibitively costly. Although variationist
practice sometimes advocates restricting the number tokens per type for each individual Wolfram
(1993), from a technical perspective, even a small number of by-individual replications causes
problems for the classical statistical model. An important advantage of the mixed-effects modeling
framework is that it allows the researcher to sample as many tokens from a given individual as is
feasible, thereby increasing statistical power. Importantly, this also opens up additional possibilities
to study how individuals differ systematically over and above the differences between the groups
to which they belong. This is a critical perspective for understanding variation in the speech
community.

Returning to our data, it is worth noting that to this point we have assumed that the only
difference between the individuals is their baseline preference for was versus were. However, there
is some indication of significant variability in the sensitivity of the individuals to Polarity, which
emerged in Figure 4 as linked to individuals’ age, and which in our current mixed-effects model is
accounted for by an interaction of Polarity by Age. When we relax the assumption that the effect
of polarity is exactly the same for all individuals by allowing by-individual random contrasts for
Polarity into the model specification, we obtain a model with a significantly improved goodness
of fit, according to a likelihood ratio test (X2

(2) = 7.91, p = 0.0191). Nevertheless, we are skating
on thin ice. More than half of the individuals do not have a single negative token. The remaining
individuals typically provide only a single example, with a maximum of four. Unfortunately, the
paucity of data does not warrant exploring individual differences in their grammars for Polarity.

4.4 Random forests

Consequently, we turn to a relatively new tool: random forests. Random forests were developed
by Breiman (2001), building on earlier work on classification and regression trees (Breiman et al.,
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1984). In what follows, we make use of the implementation of random forests available in the
party package in R (Strobl et al., 2008, 2007; Hothorn et al., 2006a), which implements forests of
conditional inference trees (Hothorn et al., 2006b). Like logistic models, random forests seek to
predict, given a set of predictors, which of the alternatives was and were is most probable. However,
these statistical techniques achieve the same goal quite differently. Logistic models predict the
choice between was and were on the basis of a mathematical equation such as (3) above which
specifies for each predictor how it affects this choice. Thanks to various simplifying assumptions,
the mathematics of these models make it possible to estimate the parameters quickly and efficiently.

Random forests, in contrast, work through the data and, by trial and error, establish whether a
variable is a useful predictor. The basic algorithm used by the random forests constructs conditional
inference trees. A conditional inference tree provides estimates of the likelihood of the value of the
response variable (was/were) on the basis of a series of binary questions about the values of predictor
variables. For instance, for Adjacency, it considers whether splitting the data into adjacent and
non-adjacent utterances goes hand in hand with the creation of one set of data points where was
is used more often, and another set where were is used more often. The algorithm works through
all predictors, splitting (partitioning) the data into subsets where justified, and then recursively
considers each of the subsets, until further splitting is not justified. In this way, the algorithm
partitions the input space into subsets that are increasingly homogeneous with respect to the levels
of the response variable.

The result of this recursive binary splitting of the data is a conditional inference tree. At
any step of the recursive process of building such a tree, for each predictor, a test of independence
of that predictor and the response is carried out. If the test indicates independence, then that
predictor is useless for predicting the use of was or were. If the null hypothesis of independence is
rejected, the predictor is apparently useful. If there are no useful predictors, the algorithm stops.
If there is more than one useful predictor, the predictor with the strongest association with the
response is selected, the p-value of the corresponding test is recorded, and a binary split on the
basis of that variable is implemented. Conditional inference trees implement safeguards ensuring
that the selection of relevant effects (predictors, variables) is not biased in favor of those with many
levels (multiple factors in a factor group), or biased in favor of numeric predictors (e.g. age of the
individuals).

Random forests construct a large number of conditional inference trees (the random forest).
Each tree in the forest is grown for a subset of the data generated by randomly sampling without
replacement (subsampling) from observations and predictors. The metaphor used in statistics is
of putting part of the observed data into a bag. The data in the bag is referred to as the ‘in-bag’
observations. The data points that were not sampled are referred to as the ‘out-of-bag’ observations.
The consequence of this procedure is that for each tree a training set (the in-bag observations) is
paired with a test set (the out-of-bag observations). The accuracy of a tree’s predictions is evaluated
by comparing its predictions for the out-of-bag observations with the actual values observed for the
out-of-bag observations.

To evaluate how useful a predictor is, a permutation variable importance measure is used.
Suppose that a given predictor is associated with the response variable. For example, in our dataset
were (as opposed to was) is associated with adjacency. By randomly permuting the values of the
predictor, the association with the response variable is broken. An artificial example illustrating
this point is given in Table 8. For the observed adjacencies, all but one non-adjacent utterance is
paired with was, and all adjacent utterances are paired with were. When the levels of Adjacency
are randomly permuted, this difference between was and were is erased. In this example, after
permutation, adjacent utterances occur equally often with both forms, and the same holds for the



Was/were as a case study for statistical practice 23

non-adjacent utterances.

Response observed Adjacency permuted Adjacency

was non-adjacent adjacent
were adjacent adjacent
were adjacent non-adjacent
was non-adjacent non-adjacent
was non-adjacent adjacent
were adjacent non-adjacent
were non-adjacent adjacent
was non-adjacent non-adjacent
was non-adjacent non-adjacent
were adjacent non-adjacent

Table 8: Example of how permuting the levels of a predictor can break its association with the
response variable.

In random forests, the permuted predictor, together with all the other predictors, is used
to predict the response for the out-of-bag observations. If the original, unpermuted predictor
was truly associated with the response, i.e., if the original predictor is a significant predictor of
the response, then a model with the permuted version of the original predictor must be a less
accuracte classifier. In other words, classification accuracy will decrease substantially if the original,
unpermuted predictor was truly associated with the response. The extent to which the model
becomes worse is a measure of the importance of a predictor. If the model hardly becomes worse,
then a predictor is not important. However, if the model’s performance decreases dramatically,
we know that we have an important predictor. Breiman (2001) therefore propose the difference in
prediction accuracy before and after permuting the predictor, averaged over all trees, as a measure
for variable importance.

In the present study, we make use of an improvement of this measure, the conditional variable
importance measure implemented in the cforest function of the party package. Strobl et al.
(2008) show that Breiman’s original permutation importance severely overestimates the importance
of correlated predictor variables. They propose a conditional permutation scheme that protects
the evaluation of a variable’s importance against inflation. For instance, in the present study of
was/were variation, Age is a sensible predictor. A variable such as income, which correlates with
age (older people tend to have higher incomes) is not a sensible predictor. Without appropriate
measures, a random forest would nevertheless assign income a high variable importance, whereas
a simple linear model would immediately detect that income is irrelevant once age is incorporated
as a predictor. The conditional permutation variable importance implemented in the cforest

function of the party package correctly reports spurious predictors such as income to have a very
low variable importance.

Having outlined how the importance of variables is gauged by random forests, we finally need
to introduce how a random forest is used to obtain predictions. After all, we are now dealing not
with a single tree, but with a forest of trees. The solution adopted by the random forest technology
is to make use of a voting scheme. All the trees in the forest contribute a vote based on what
each tree thinks is the most likely response outcome, was or were. The prediction of the tree is the
outcome that receives the greatest proportion of the votes.

Random forests provide a useful complement to logistic modeling in three ways. First, be-
cause random forests work with samples of the predictors, they are especially well applicable to
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problems with more variables than observations, i.e. “small n large p” problems. This situation
is the typical case in sociolinguistic research where many studies are based on a relatively small
number of tokens (observations) and a large number of predictors. Second, subsampling combined
with conditional permutation variable importance estimation reduces substantially the problem of
collinearity (correlated factors) that can severely destabilize regression models (Belsley et al., 1980).
Third, empty cells, linear constraints in the predictors, or perfect separation of response classes in
particular combinations of predictors may render regression modeling, or the exploration of inter-
actions in a regression model, impossible. Random forests do not have these estimation problems,
making them the ideal panacea for the thorniest problems of variation analysis. The added value
is that random forests allow the researcher to explore more aspects of the data and by consequence
more insights into the explanation for variable processes. (For an excellent introduction to random
forests, see Strobl et al. (2009).)

A random forest for our data with just the four predictors Adjacency, Polarity, Age, and
Individual, comes with an index of concordance for this model, C = 0.88 that already presents
a slight improvement on the value (0.87) obtained for the corresponding mixed model summarized
in Table 7. However, the real power of the random forest becomes apparent when we consider
other predictors that are available, but that were not included in the analyses with the generalized
linear model (Tables 1 and 2) due to covariation with other predictors, highly unequal cell counts,
empty cells, etc. Figure 5 presents the variable importance for the predictors Individual (the
people in the sample), Age (the actual age of each person), Polarity, DP Constituency (11 levels,
including levels such as Bare NP, Numeric Quantifier, Partitive, and Definite), the individuals’
level of Education (high versus low), the Sex of the individual (male versus female), and the
four different schemas for categorizing adjacency (described earlier). Note that within the linear
modeling framework (including standard variable rule analysis), it would be impossible to explore
simultaneously these highly correlated measures for Proximity and DP constituency. The index
of concordance for the model with the full set of predictors increases to C = 0.92.

Figure 5 depicts the relative importance of the predictors, using conditional permutation-
based variable importance. The gray vertical line highlights the variable importance of the least
important predictors, which is for all practical purposes equal to zero.

What Figure 5 shows is that the individual is by far the most important predictor. Substantial
variability tied to the individual is also found in almost any psycholinguistic experiment (see, e.g.
Baayen, 2008), where a subject random-effect factor invariably explain much of the variance. An
important advantage of using mixed effects models for sociolinguistic studies will be the ability to
amass a similar foundation of research. Analysts will be able to document the extent and nature of
individual variance for linguistic features at all levels of grammar and across speech communities.

The next most-important predictor is Age, an external predictor also tied to the individual.
Some predictivity is detectable for DP constituency, Polarity, Proximate1, and SexṄone of the
other predictors contribute statistically significant effects, as indicated by the vertical gray line.

Before exploring how the predictor variables work together in predicting the choice between
was and were, we emphasize again that the predictors considered jointly in this random forest are
non-orthogonal and collinear. In particular, Proximate1, Proximate2, Prox1.adj and Adjacency,
while not tapping into precisely the same underlying mechanism, are nonetheless highly collinear
phenomena. Moreover, DP Constituency mirrors Proximity to a high degree since certain mod-
ifying structures in the DP are more complex and inevitably longer than others (e.g., quantifier
phrase vs. bare NP). In a linear model, these predictors should never be considered together (see,
e.g. Guy, 1988). Even when considered jointly in a (mixed) linear model, unsolvable computational
problems arise, and error messages of various kinds are generated. The random forest, however,
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Figure 5: Conditional permutation variable importance for the random forest with all predictors.
Predictors to the right of the rightmost vertical gray line are significant.

is immune to this kind of problem. It will consider all variables in their own right (factorial or
numeric) and identify which of these variables is the superior predictor.12

Another useful property of the random forest is that it is not prone to overfitting, and that it is
unhampered by small or even zero cell counts. For the present set of tests for proximity, Proximate1
and DP Constituency are among the top three of the internal predictors in the analysis, together
with Sex. These are among the most fine-grained predictors, one measuring distance in words to
the plural referent and the other measuring the nature of the composition of the DP. Their relative
importance reveals that the nature of the DP is a more important predictor.

Thus, it becomes critical to understand the difference between these two predictors. Prox-

imate1 measures the proximity to a plural element and was is more likely in these contexts. DP

Constituency identifies the different types of determiner phrases in the data. One of the most
prominent types is Partitive constructions (and combinations thereof), which are more likely to
occur with was as well. Indeed, previous research has suggested a universal hierarchy of DP Con-

stituency. So far, however, the rankings of categories have differed across studies (e.g., Hay and
Schreier, 2004; Walker, 2007). This may be due to the fact that the distribution of DP types varies
by data set or it may be due to varying coding strategies, but the fact that it turns up across
studies is suggestive and in most cases the highest ranked category involves numbers There was
three of us; there was about fifty of us. However, such constructions may or may not be grammat-
ically plural despite the evident plural element. The relative ranking of DP Constituency in our
analysis suggests that another underlying reason for variant was could be explained by certain NP
constructions, in this case ones that are being reanalyzed as singular, not plural, hence was not

12It is important to note the different impact of modeling an unordered (factorial) vs. an ordered (numeric)
predictor. In the former the classification tree will try all possible splits of the data and there will be many different
subsets. With a numeric predictor however, the model is much more constrained, due the intrinsic order of the
factor levels. This means that the result of the analysis will be more linguistically sensible if the predictor is indeed
well-characterized as ordered.
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Figure 6: Conditional inference recursive partitioning tree.

were. In order to fully substantiate this hypothesis a more detailed semantic-syntactic analysis of
DP Constituency is required. 13

In order to clarify how the predictors evaluated by the random forest work together, we
now consider the conditional inference tree for the data, grown with all predictors included. The
superiority of a random forest (Figure 5) compared to a single conditional inference tree, grown
with all predictors and all datapoints (see Figure 6) is evident from the inferior index of concordance
for the single tree, C = 0.79. Nevertheless, the conditional inference tree highlights the complex
interaction characterizing this data set: Polarity is relevant only for a subset of the individuals,
and the effect of Age is further restricted to positive polarity items for that subset of individuals,
in congruence with the linear model’s evaluation of this interaction (cf. Figure 4).

Complex interactions, such as the one observed here, involving Individual, Age, and Po-

larity, can be difficult or even impossible to capture adequately even with a mixed-effects logistic
linear model. In order to capture the differences between the individuals emerging from the con-
ditional inference tree, the random-effects structure of the mixed-effects model would have to be
enriched with by-individual random effects for Polarity and Age, as well as individual differences
for the interaction of Polarity by Age. Above, we have briefly mentioned that including random
contrasts for Polarity improved the fit of the mixed model. But we also observed that there were
very few examples of negative polarity in the data, which is why we did not pursue a more com-
plex random effects structure. The conditional inference tree indicates that a much more complex
random effects structure is required than we anticipated there. However, due to data sparsity, the

13The essential idea is that numerals as nouns are singular but as quantifiers they pluralize the noun. In other
words, they have variable behaviour. In the case of partitive structures, it seems there is ambiguity about whether
they involve multiple DPs or just one, with a quantifier, and this may be the reason for the current results (Massam
p.c. 2.23.12).
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Figure 7: Conditional inference recursive partitioning trees for all individuals (left) and for variable
individuals (right).

mixed-effects model that we fitted to the data, with no less than 10 random effects parameters,
was clearly stretched beyond its limits, and is not discussed further here. In contrast, the random
forest and conditional inference tree offer an ideal tool to be used in tandem with the mixed-effects
logistic model to come to a full understanding of the quantitative structure of a data set and as a
result an optimal interpretation of the variation. In this case, we are pointed to the fine-grained
distinctions among the predictors, particularly, Proxmate1 and DP Constituency. Their relative
importance points to the predictor that offers the better explanation for was/were variation and to
which we should turn to inform our interpretation of the data.

In summary, for naturalistic, unbalanced data with complex interactions, random forests help
overcome the limitations of mixed-effects models, although the reader should be warned that this
comes at the cost of substantially more computing time. The smart mathematics underlying the
mixed model make it possible to fit a model to the present data set in a few seconds. By contrast,
even with smart computational optimization, the calculation of variable importance, based as it is
on extensive permutation schemes, can take many hours to complete.

4.5 Restricting the analysis to variable individuals

The final question that we consider here is whether only variable individuals should be included in
the analysis. In the present data set, there are 38 individuals who show no variation in their choice
of was versus were. Variationist methodology typically recommends that categorical individuals
be removed for the study of variable phenomena (e.g., Guy, 1988, p. 130). However, in practice,
particularly with morpho-syntactic and discourse-pragmatic features, they are often included on
the assumption that internal predictors will be parallel across individuals. The question is whether
or not these individuals without variation are a source of noise that should be taken out before the
start of the analysis? Would the relative importance of the predictors change if a random forest
were fitted to the data after exclusion of the non-variable individuals?
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Factor Levels Successes Counts Perc Probs Weight

1 Polarity Affirmative 195 326 59.82 0.5492 65.14
2 Polarity Negative 10 31 32.26 0.2638 36.59
3 Adjacency Adjacent 34 78 43.59 0.3171 41.92
4 Adjacency Non-Adjacent 171 279 61.29 0.4846 58.68
5 Sex F 119 191 62.30 0.4587 56.08
6 Sex M 86 166 51.81 0.3401 44.22

Table 9: Standard variable rule analysis, sum coding, variable individuals only.

Table 9 shows a variable rule-style simple main effects model for the variable individuals only
(compare Table 1; C =0.622). AgeGroup is not significant (and was therefore removed from the
model specification). Instead, Sex now takes over as a significant external predictor. In a mixed-
effects model including random intercepts for Individual, the effect of Sex is marginal (p = 0.0621,
two-tailed test), but females favoured was. This is the result for Sex reported in the original study
of was/were variation in York for a smaller set of individuals (Tagliamonte, 1998, p.181). When
a random forest is grown for this subset of the data, the index of concordance C equals 0.88, a
value that is lower than that for the random forest for all individuals (C = 0.92), but higher than
the value reached by the model for all individuals when its predictions are evaluated for just the
subset of data with variable individuals (C = 0.78). As can be seen in Figure 7, the importance of
the variables changes as well. Age is now irrelevant, whereas Polarity and Proximate1, and to a
lesser degree Adjacency and DP Constituency have gained importance.

In the right panel of Figure 7, two vertical gray lines are displayed. These lines have been
added by hand to highlight the relative importance of the predictors. Those on the left line or
below can be considered superfluous while those on the right are taken to be acceptable.14

These changes indicate that the non-variable individuals are not just random noise. Being a
non-variable individual must be, at least in part, predictable from the other variables. To pursue
this possibility, we fitted both a conditional inference tree and a logistic model to the data with
as a dependent variable whether the individuals did not show any variability (models not shown).
The generalized linear model pointed to a highly significant effect of Age (older individuals are
more variable, p < 0.0001) and possibly effects of Polarity (negative polarity increases variability,
p = 0.0446) and Adjacency (non-adjacency decreases variability, p = 0.0573). With an index of
concordance C = 0.68, this model did not outperform a conditional inference tree with a single
split in age at 60: C = 0.69, see Table 10.

This example illustrates the more general methodological point, namely, that the effect of
categorial and non-categorical individuals should be brought into the analytical exploratory ma-
neuvers of a variationist analysis (Guy, 1980). Are the categorical individuals random or can they

14The left vertical line highlights the variable importance of Proximate1.adj. Random permutation of the identifiers
for Proximate1.adj resulted in a negative accuracy score, indicating classification accuracy tended to increase (rather
than decrease) when Proximate1.adj was permuted. Such decreases are expected when irrelevant predictors are
included in the model: The importance of irrelevant predictors varies randomly around zero. The magnitude of this
‘random’ increase in accuracy provides us with an indication of how much of a predictor’s variable importance can
be attributed to chance. As a consequence, positive variable importance values of similar or smaller magnitude as
negative variable importance values are, as a rule of thumb, indicative of a predictor being superfluous. In other
words, by mirroring the maximal decrease around zero, leading to the right vertical line, a safety margin is created.
Those predictors that lead to an increase in accuracy that exceeds the maximal decrease in accuracy produced for
irrelevant predictors are taken to be acceptable. In the left panel of Figure 7, the same procedure was followed, but
the two lines are so close together that they appear as a single line.
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age > 60 age ≤ 60

non-deterministic individual 252 105
deterministic individual 42 90

Table 10: Deterministic and variable individuals cross-classified by an age cut-off at 60, as suggested
by a conditional inference tree.

be predicted by other variables? It makes sense to zoom in on what might be going on with variable
informants otherwise valuable information might be swamped by noise. At the very least, directly
addressing the nature of variation by individuals should be discussed and interpreted. Now that
statistical techniques are available which can easily include the individual as part of the analysis,
sociolinguists will be able to deepen their understanding of the dialectic between individual and
group behaviour.

5 Discussion

The use of plural existential was is a pervasive, highly variable, feature of contemporary varieties
of English. The case study of York we have conducted here provides insight from a single speech
community in a geographical setting - one of the oldest cities in northern England — where English
has evolved in situ for centuries. In a 1998 study of was/were variation in this community, the
analysis suggested two explanatory predictors — Polarity and Adjacency. Despite the unam-
biguous social values assigned to the variants, namely non-standard was and standard were, little
explanatory value could be attributed to factors that typically provide a good measure of social
embedding for linguistic variables of this type (e.g. Education, Sex). Instead, the results suggested
that young females were leading an ongoing rise of existential was. However, the original analysis
was based on only 310 tokens from 40 individuals and a fixed effects analysis.

The present analyses are based on an augmented data set, 489 tokens from 83 individuals,
which at the outset provides for a better statistical model. By employing several new statistical
tools we have gained an enriched view of this data. A mixed effects model enabled us to include
Individual as a random effect factor and Age as a nonlinear numeric predictor with both linear
and quadratic terms. This bolstered the original finding that two internal constraints — Polarity

and Adjacency — underlie the realization of forms and that there is a bona fide change in progress.
However, we have discovered a far greater source of explanation underlies the predictor labelled
“Adjacency” than previously thought. In the random forest and conditional inference tree analyses
we were able to model predictors that are continuous. A case in point is the relationship between
the verb and the plural referent vs. its proximity to the closest plural element. When these were
treated as independent continuous predictors (rather than factorial predictors) we discovered that;
1) they were more explanatory than any binary categorization of proximity, i.e. adjacent/non-
adjacent (either as adjacent to the referent or the closest plural element); and 2) the relative
importance of the DP complex, DP Constituency over proximity to a plural element, Proximate1
was revealed. Finally, critical inter-relationships among social and linguistic factors have come to
the fore, enabling new explanatory insights into the was/were variation in York and perhaps more
generally, as we detail below.

A simple main effects model presented in Tables 2 and 3 was the starting point of our analyses;
however, the index of concordance was only modest at 0.66. At the outset of our foray into new
statistical tools, we first noted the difference between sum coding and treatment coding in presenting
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statistical results. Both kinds of dummy coding lead to the same predictions. They differ in that
the former calibrates group differences with respect to the grand mean and the latter with respect
to a ‘default’, the reference level. We used treatment coding as it offers more straightforwardly
interpretable coefficients for understanding interactions between factors and covariates. We also
moved towards testing the actual Age of each individual rather than working with a factor AgeGroup.

In exploring interactions in the data set using treatment coding and Age as a numeric co-
variate, we discovered a strong interaction between Age and Polarity (dramatically portrayed in
Figure 4). While existential was was increasing monotonically in apparent time for affirmative con-
texts, confirming the earlier results, it is a classic inverse U-shaped curve for negative contexts, with
a higher likelihood of use around 50 years of age. This only became evident when the analysis was
expanded to include linear and quadratic terms for Age and their interaction with with Polarity,
and yet there was only a tiny improvement, C =0.66, in how well the model discriminated between
the was and were responses.

We then made the transition from a standard logistic model to a mixed-effects logistic model
(Table 7) and included the individual as a random-effect factor. This tool offered several advan-
tages. First, we obtained a much better fit of the model to the data, C =0.87. Second, including
the individuals as a random-effect factor permitted us to be more confident about making general-
izations from the data set at hand to the population it represents. Third, the mixed-model provided
enhanced estimates of the coefficients and generally reduced standard errors for these estimates,
resulting in smaller p-values and hence greater confidence that these coefficients are the most use-
ful for formulating interpretations. Here, it is evident that the enhanced toolkit offers more solid
statistical support for assisting interpretation of the data.

When we brought the individual into the model, we did this by allowing for adjustments to the
intercept for the individuals. In this way, we could do justice to the slightly different baseline rates
of was compared to were for individuals. We explored whether there might be additional differences
between individuals and discovered that the effect of Polarity was highly circumscribed. Negative
tokens of was are restricted to several of the uneducated women in the data. Due to this fact
and the general scarcity of negatives in the data base, N = 34, we could not pursue individual
differences further.

We complemented the mixed-effects logistic model with an analysis using random forests,
a computationally intensive but high-precision non-parametric classifier. Fitting the same set of
predictors to the data improved the index of concordance to 0.88. However, the real power of
the random forest technique became apparent when we considered the full set of predictors that
had been coded into the data files. The index of concordance rose to 0.92. Inspection of the
importance of the predictor variables (Figure 5) bolstered the building evidence that Individual,
Age, Polarity, DP constituency and Proximate1 are the key factors in the realization of was.
The novel contribution here is the nuanced perspective of the relative importance of all the potential
predictors simultaneously.

An eminently useful property of random forests is that many different variables, even those
that seek to capture similar underlying phenomena but use different factor levels (configurations),
can be included and explored together. This is something that is not possible in logistic models. The
models we have employed test several configurations that probe for proximity effects: (Proximate1,
Proximate2, Prox1.adj, Adjacency). The binary predictors turned out not to be relevant and so
did the proximity in words between the verb and its referent. Instead, Figure 5 and 7 show
that Proximate1 (the number in words intervening to the closest plural element) offers the most
important contribution of this set of predictors (Figures 5 and 7). However, vying for importance
is DP Constituency which exposed an underlying syntactic explanation.
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The results arising from our analyses of variable and non-variable individuals which shows
that the Adjacency predictor changes over the course of the current generation of speakers supports
the idea that some kind of reanalysis may be underway within the DP complex. While it is beyond
the scope of the present paper to conduct the in-depth syntactic analysis required to pursue this
idea further, it suggests an interesting way forward for future studies was/were variation.

Finally, we grew a conditional inference tree to uncover how the most important predictors
worked together in the data set. This analysis (Figure 6) provided an impressive picture. Indi-
vidual variation split the community, Polarity was only influential among a subset of individuals,
differentiation by age was present only for this subset and it was further restricted to affirmative
contexts. Interactions of this complexity are difficult to model elegantly in the mixed-effects logistic
framework.

Given the overwhelming strength of the Individual on variable was/were, can we conclude
that the story is simply the result of individual variation in York (and perhaps more generally)?
There are a number of reasons why this cannot be the primary explanation. Recall that there are
pervasive internal constraints involving the contrast between affirmative and negative polarity and
an effect of proximity (whether a simple contrast between adjacent/non-adjacent (Adjacency) or
the influence of a plural element (Proximate1 or DP constituency). The new tools we have used
here have demonstrated that each of these predictors are statistically significant over and above
the effect of Individual, depending on the model. Studies that do not bring Individual into the
model specification not only run the risk of failing to come to grips with an important source of
variation, they also run the risk of reporting a result as significant which upon closer inspection
turns out not to be not significant, i.e. an anti-conservative interpretation of results (see, e.g.
Baayen, 2008; Baayen et al., 2008)..

In the last step of our analysis we investigated whether and how restricting the analysis to
non-categorical individuals might affect our conclusions. It turned out that an analysis of variable
individuals only removed Age as predictor, while bringing to the fore the effects of Polarity, Ad-
jacency, Proximate1 (Figure 7), while supporting the importance of DP Constituency. However,
we also observed that whether an individual is categorical in her choice of was or were is predictable
from her age, with less variable behavior for younger individuals. For our data set, removal of cate-
gorical individuals therefore seems ill-advised, as it introduces a bias against younger individuals in
the analysis. For these reasons we do not put much stock in the re-ranking of predictor importance
shown for the variable speakers only.

Taken together, these new analyses permit us to offer the following explanation for was/were
variation in York. The two predictors — Polarity and Adjacency — actually reflect two different
linguistic mechanisms that have separate and independent sociolinguistic repercussions. In affir-
mative contexts there is language change in progress. It is incremental, roughly linear and steady.
We conclude that use of existential was is taking its place in the spoken vernacular of English, at
least as spoken in northern England at the turn of the 21st century. The fact that the same tra-
jectory of change has been found in real and apparent time in Appalachian English(Montgomery,
1989), Tristan da Cunha English (Schreier, 2002), New Zealand English (Hay and Schreier, 2004)
and Australian English (Eisikovits, 1991) supports this interpretation and suggests it extends to
other varieties of English. The fact that the DP Constituency comes to the fore when the various
predictors involving proximity are tested together exposes an unpredicted result. It suggests that
the use of was may not be driven by either functional factors or agreement relations but instead
involves the syntax of the DP itself.

The effect of polarity is a different process altogether. Based on one of the most productive
mechanisms in historical change — morphologization — the use of the was/were contrast can encode
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a polarity contrast rather than agreement. Recall the dramatic picture of affirmative vs. negative
in apparent time in Figure 2. Interestingly, closer inspection of the data clarifies that all instances
of was in negatives were produced by less educated women. However, none of the models picked
this up. This may be due to the very small numbers or the fact that the women simply talk more
than the men. In any case, this heightened use of a non-standard form among a sociolinguistically
salient sector of the population supports an interpretation of this pattern as social, not linguistic.
The fact that the women also use more were than the men provides corroborating evidence.

Thus, we suggest that the products of morphologization can be co-opted to function in the
sphere of social meaning to mark particular social groups. This could explain why remorpholo-
gization for was has been a fundamental part of the explanation for was/were variation in North
America (e.g., Schilling-Estes and Wolfram, 1994a). It may also explain why the the correlation
can go either way, more was for negatives or more was for affirmatives (e.g., Tagliamonte, 2009).
We might predict, for example, that if a variety has no effect of negation then it may not have
social reallocation of was/were variation. Further detailed investigation of patterns of was/were
variation in contexts of negation will clarify these hypotheses.

In sum, was/were variation offers a unique showcase of the primordial drives in linguistic
variation and change. The ostensible beginning point for was/were variation was a structural
agreement relationship governed by syntactic mechanisms of case assignment and hierarchical con-
nection. However, somewhere along the line a stronger force must have challenged the structural
agreement bond. The creation of morphological contrasts, which play a central role in grammatical
change, was perhaps one of those forces. These appear to be especially amenable to the embedding
of social meaning. The tension between agreement rules and linear processing appears to be part
of the evolution of this grammatical system and remain immune to social conditioning. In these
data, linear processing rather than structural relationship provided a better explanation for the
use of was; however, the constituency of the DP may prove more informative. In any case, the
results offer several predictions that can now be tested in other speech communities. First, the
effect of adjacency as measured by a binary distinction between the verb and plural referent can be
expected to negatively correlate with the developmental trajectory of existential was such that the
effect levels as the frequency of was increases. Second, polarity effects, can be expected to correlate
with extra-linguistic predictors, although the way a speech community will manifest this effect — if
it manifests it at all — will vary. Indeed, these new results for variable (was) suggest more generally
that contrasting factors on variable processes may have pointedly distinct interpretations. Thus,
the new statistical tools we have employed here may pioneer a whole new type of evidence from
which to distinguish the multiplex predictors influencing linguistic variation.

5.1 Conclusion

Let us now return to the issue of methodological practice. Of the models we have considered, the
mixed-effects model and the random forest provide the closest fits to the data. In general, the mixed-
effects model is an excellent choice for relatively balanced data sets with one or more, potentially
crossed, random effect factors (individuals, words, constituents, etc.). For highly unbalanced designs
and complex interactions, conditional inference trees and random forests are more flexible, and may
yield superior models. However, for large data sets with multiple random-effect factors with many
levels, they rapidly become computationally intractable, given current hardware. (Estimating the
conditional variable importance for the full data set required approximately 8 hours of processing
time on a state-of-the-art CPU.)

Standard variationist practice is to code factors (predictors) hypothesized to impact linguistic
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variables in as elaborated a fashion as possible and then ‘hone the analysis’ down to the best possible
model of the data (e.g., Tagliamonte, 2006). The reason is, of course, the massive covariation across
factor groups, empty cells and extreme differences in cell counts typical of analyses of natural speech
data. The methodological assistance of a random forest analysis is that it is immune to these
problems, allowing the analyst to throw all the factor groups and all the factors into the analysis at
the same time and let the analysis evaluate the relative importance of factors. While such a strategy
should not be substituted for a linguistically reasoned model, after all the old adage of “garbage in,
garbage out” applies nonetheless, it offers the analyst at the very least a preliminary view on the
nature of the data set and the impact of the predictors. The conditional inference tree offers yet
another perspective since it reveals how interactions and predictors operate in tandem. Indeed, the
hierarchical organization of the variable grammar (social and linguistic) is laid out in panoramic
relief. Taken together, these new tools can complement and guide the selection of predictors for
linear modeling. We conclude that conditional inference trees and random forests, together with
mixed-effects models, are practical and effective statistical techniques to add to the sociolinguist’s
toolkit.

Appendix

Example R code

In this study, we have used R (R Development Core Team, 2009) for the statistical analyses.
The simple main effects models presented in this study can be obtained using the variable rule
program (Cedergren and Sankoff, 1974), GoldVarb (Rand and David Sankoff, 1990), GoldVarb X
(Sankoff et al., 2005), Rvarb (Paolillo, 2002), and Rbrul (Johnson, 2009). Rbrul also allows for
straightforward inclusion of interactions and covariates in the model specification. Mixed-effects
models require Rbrul or plain R with the lme4 package (Bates and Maechler, 2009). To our
knowledge, the conditional inference trees, and random forests based on conditional inference trees,
have so far been implemented in R only, in the party package. For the following analyses, the lme4

and party packages have to be activated first, as well as the rws package in order to have access
to the function for calculating the index of concordance C.

> library(party)

> library(lme4)

> library(rws)

The data are available under the name york in the r data frame format on the first author’s website,
and can be loaded into R as follows:

> york =

read.csv("http://individual.utoronto.ca/tagliamonte/Downloads/york.csv",

header=TRUE)

The simple main effects model of Table 6 and the model including an interaction of Polarity by
(nonlinear) Age (Table 5) can be obtained with the following lines of code. The last line carries
out an analysis of deviance to ascertain whether the investment in additional parameters by the
second model leads to a significantly improved fit to the data.

> york.glm1 = glm(Form~Adjacency+Polarity+Age, data=york,

family="binomial")
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> york.glm2 = glm(Form~Adjacency+Polarity*poly(Age,2,raw=TRUE),

data=datall, family="binomial")

> anova(york.glm1, york.glm2, test="Chisq")

Analysis of Deviance Table

Model 1: Form ~ Adjacency + Polarity + Age

Model 2: Form ~ Adjacency + Polarity * poly(Age, 2, raw = TRUE)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 485 631.28

2 482 616.76 3 14.524 0.002273

A reasonable mixed-effects model is obtained as follows:

> york.lmer = lmer(Form ~ Adjacency + Polarity * poly(Age, 2, raw=FALSE) +

(1|Individual), data = york, family = "binomial")

> print(york.lmer)

A random forest with unbiased conditional inference trees is obtained with

> york.cforest = cforest(Form ~ Adjacency + Polarity + Age +

Sex + Education + Modification + Proximate1.adj + Proximate1 +

Proximate2 + Individual, data = york)

Assessment of the relative importance of the (correlated) predictors requires conditional permuta-
tion variable importance, conditional=TRUE of the varimp function (this requires many hours of
processing time with current hardware):

> york.cforest.varimp = varimp(york.cforest, conditional=TRUE)

> dotplot(sort(york.cforest.varimp))

Assessment of classification accuracy is obtained with treeresponse,

> york.trp = treeresponse(york.cforest)

> york$PredFOREST = sapply(york.trp, FUN=function(v)return(v[2]))

> york$FormBin = (york$Form=="S")+0

> somers2(york$PredFOREST, york$FormBin)

the best single conditional inference tree is produced with:

> york.ctree = ctree(Form ~ Adjacency + Polarity + Age +

Sex + Education + Modification + Individual, data=york)

> plot(york.ctree)
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